Surface Parameters Retrieval from Fully Bistatic Radar Scattering Data

被引:4
|
作者
Yang, Ying [1 ,2 ]
Chen, Kun-Shan [1 ,3 ]
Shang, Guofei [3 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Hebei GEO Univ, Sch Land Resources & Urban & Rural Planning, Shijiazhuang 050031, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
bistatic radar scattering; random media; parameter inversion; neural network; MICROWAVE DIELECTRIC BEHAVIOR; NEURAL-NETWORK; MULTIPLE-SCATTERING; SNOW PARAMETERS; SOIL-MOISTURE; ROUGH-SURFACE; WET SOIL; INVERSION; BACKSCATTERING; EMISSION;
D O I
10.3390/rs11050596
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fully bistatic radar scattering from rough surfaces is of vital importance in terrain remote sensing, but results in bulky data volume. The scattering is dependent on physical parameters of the media and is controlled by the radar observation geometry. Together, the two sets of parameters determine the scattering patterns in a bistatic plane confined by incident and polar angles in both incident and scattering directions. For radar remote sensing, it is desirable to infer surface parameters of interest, with satisfactory accuracy, from large volumes of measured data sets. This is essentially a task of data mining. In this paper, we present model-generated bistatic radar scattering data, followed by a sensitivity analysis, to identify a suitable configuration in terms of parameter inversion from fully bistatic measurements by a Kalman filter-trained dynamic learning neural network (DLNN). Results indicate that with bistatic observation, superior retrieval performance (as compared to backscattering observation) can be readily achieved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Forward scattering bistatic radar imaging method and practice data processing
    Cao, Yunhe
    Zhang, Tao
    Zhang, Shouhong
    Luo, Binfeng
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2011, 22 (02) : 206 - 211
  • [22] DBS bistatic altimetry - Scattering process and surface parameters estimation
    Bogo, G
    Casilli, T
    Picardi, G
    Seu, R
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 895 - 897
  • [23] BISTATIC SCATTERING ON A MONOSTATIC RADAR RANGE
    HERDEG, WF
    WENDEL, H
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1991, 2 (04): : 459 - 461
  • [24] BISTATIC RADAR SCATTERING BY A CHAFF CLOUD
    GUO, YP
    UBERALL, H
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (07) : 837 - 841
  • [25] Radar image simulation from fully polarimetric scattering of heterogeneous canopy surface
    Zhang, W
    Jin, YQ
    2000 5TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY PROCEEDINGS, 2000, : 118 - 121
  • [26] Bistatic radar moving returns from sea surface
    Khenchaf, A
    Airiau, O
    IEICE TRANSACTIONS ON ELECTRONICS, 2000, E83C (12) : 1827 - 1835
  • [27] BISTATIC RADAR SCATTERING BY RANDOMLY ORIENTED WIRES
    DEDRICK, KG
    HESSING, AR
    JOHNSON, GL
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1978, 26 (03) : 420 - 426
  • [28] INVESTIGATION OF BISTATIC RADAR SCATTERING FROM SEA SURFACES WITH BREAKING WAVES
    Yang, Xiaofeng
    Du, Yanlei
    Li, Ziwei
    Chen, Kun-Shan
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1502 - 1503
  • [29] On the Modeling of the Bistatic Coherent Scattering from a Rough Surface
    Comite, Davide
    Ticconi, Francesca
    Guerriero, Leila
    Pierdicca, Nazzareno
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 2473 - 2474
  • [30] Electrical properties of the Venus surface from bistatic radar observations
    Pettengill, GH
    Ford, PG
    Simpson, RA
    SCIENCE, 1996, 272 (5268) : 1628 - 1631