A Revisit of the Semi-Adaptive Method for Singular Degenerate Reaction-Diffusion Equations

被引:17
|
作者
Sheng, Qin [1 ]
Khaliq, A. Q. M. [2 ]
机构
[1] Baylor Univ, Dept Math, Ctr Astrophys Space Phys & Engn Res, Waco, TX 76798 USA
[2] Middle Tennessee State Univ, Ctr Computat Sci, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
Semi-adaptation; Crank-Nicolson method; quenching singularity; degeneracy; stability; monotonicity; convergence;
D O I
10.4208/eajam.300412.200612a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses key characteristics of a semi-adaptive finite difference method for solving singular degenerate reaction-diffusion equations. Numerical stability, monotonicity, and convergence are investigated. Numerical experiments illustrate the discussion. The study reconfirms and improves several of our earlier results.
引用
收藏
页码:185 / 203
页数:19
相关论文
共 50 条