A Revisit of the Semi-Adaptive Method for Singular Degenerate Reaction-Diffusion Equations

被引:17
|
作者
Sheng, Qin [1 ]
Khaliq, A. Q. M. [2 ]
机构
[1] Baylor Univ, Dept Math, Ctr Astrophys Space Phys & Engn Res, Waco, TX 76798 USA
[2] Middle Tennessee State Univ, Ctr Computat Sci, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
Semi-adaptation; Crank-Nicolson method; quenching singularity; degeneracy; stability; monotonicity; convergence;
D O I
10.4208/eajam.300412.200612a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses key characteristics of a semi-adaptive finite difference method for solving singular degenerate reaction-diffusion equations. Numerical stability, monotonicity, and convergence are investigated. Numerical experiments illustrate the discussion. The study reconfirms and improves several of our earlier results.
引用
收藏
页码:185 / 203
页数:19
相关论文
共 50 条
  • [11] On the monotonicity of an adaptive splitting scheme for two-dimensional singular reaction-diffusion equations
    Khaliq, Abdul Q. M.
    Sheng, Qin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (06) : 795 - 806
  • [12] Compact Schemes in Application to Singular Reaction-Diffusion Equations
    Beauregard, Matthew A.
    2012 44TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 2012, : 135 - 140
  • [13] On stochastic reaction-diffusion equations with singular force term
    Alabert, A
    Gyöngy, I
    BERNOULLI, 2001, 7 (01) : 145 - 164
  • [14] A SINGULAR PERTURBATION-THEORY FOR REACTION-DIFFUSION EQUATIONS
    GITTERMAN, M
    WEISS, GH
    CHEMICAL PHYSICS, 1994, 180 (2-3) : 319 - 328
  • [15] Interface development for the nonlinear degenerate multidimensional reaction-diffusion equations
    Abdulla, Ugur G.
    Abuweden, Amna
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [16] Coupled reaction-diffusion equations with degenerate diffusivity: wavefront analysis
    Munoz-Hernandez, Eduardo
    Sovrano, Elisa
    Taddei, Valentina
    NONLINEARITY, 2025, 38 (03)
  • [17] TRAVELLING WAVE SOLUTIONS FOR DOUBLY DEGENERATE REACTION-DIFFUSION EQUATIONS
    Mansour, M. B. A.
    ANZIAM JOURNAL, 2010, 52 (01): : 101 - 109
  • [18] HOMOGENIZATION FOR STOCHASTIC REACTION-DIFFUSION EQUATIONS WITH SINGULAR PERTURBATION TERM
    Shi, Yangyang
    Gao, Hongjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (04): : 2401 - 2426
  • [19] Method of Monotone Solutions for Reaction-Diffusion Equations
    Volpert V.
    Vougalter V.
    Journal of Mathematical Sciences, 2021, 253 (5) : 660 - 675
  • [20] Analysis of HDG method for the reaction-diffusion equations
    Sayari, Sayed
    Zaghdani, Abdelhamid
    El Hajji, Miled
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 396 - 409