Blueshifts of the emission energy in type-II quantum dot and quantum ring nanostructures

被引:21
|
作者
Hodgson, P. D. [1 ]
Young, R. J. [1 ]
Kamarudin, M. Ahmad [1 ,2 ]
Carrington, P. J. [1 ]
Krier, A. [1 ]
Zhuang, Q. D. [1 ]
Smakman, E. P. [3 ]
Koenraad, P. M. [3 ]
Hayne, M. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Univ Putra Malaysia, Dept Phys, Upm Serdang 43400, Selangor Darul, Malaysia
[3] Eindhoven Univ Technol, Dept Appl Phys, NL-5612 AZ Eindhoven, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
LASERS; PHOTOLUMINESCENCE; LOCALIZATION; TEMPERATURE; DEPENDENCE; WELLS;
D O I
10.1063/1.4818834
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have studied the ensemble photoluminescence (PL) of 11 GaSb/GaAs quantum dot/ring (QD/QR) samples over >= 5 orders of magnitude of laser power. All samples exhibit a blueshift of PL energy, Delta E, with increasing excitation power, as expected for type-II structures. It is often assumed that this blueshift is due to band-bending at the type-II interface. However, for a sample where charge-state sub-peaks are observed within the PL emission, it is unequivocally shown that the blueshift due to capacitive charging is an order of magnitude larger than the band bending contribution. Moreover, the size of the blueshift and its linear dependence on occupancy predicted by a simple capacitive model are faithfully replicated in the data. In contrast, when QD/QR emission intensity, I, is used to infer QD/QR occupancy, n, via the bimolecular recombination approximation (I alpha n(2)), exponents, x, in Delta E alpha I-x are consistently lower than expected, and strongly sample dependent. We conclude that the exponent x cannot be used to differentiate between capacitive charging and band bending as the origin of the blueshift in type-II QD/QRs, because the bimolecular recombination is not applicable to type-II QD/QRs. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Complex emission dynamics of type-II GaSb/GaAs quantum dots
    Gradkowski, Kamil
    Pavarelli, Nicola
    Ochalski, Tomasz J.
    Williams, David P.
    Tatebayashi, Jun
    Huyet, Guillaume
    O'Reilly, Eoin P.
    Huffaker, Diana L.
    APPLIED PHYSICS LETTERS, 2009, 95 (06)
  • [32] Atomistic simulation of GaAs/AlGaAs quantum dot/ring nanostructures
    Rodrigues, W.
    Maur, M. Auf der
    Di Carlo, A.
    Pecchia, A.
    Barettin, D.
    Sanguinetti, S.
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 809 - 812
  • [33] Wave function engineering in quantum dot-ring nanostructures
    Zipper, Elzbieta
    Kurpas, Marcin
    Maska, Maciej M.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [34] Type-II quantum-dot-in-nanowire structures with large oscillator strength for optical quantum gate applications
    Taherkhani, Masoomeh
    Willatzen, Morten
    Mork, Jesper
    Gregersen, Niels
    McCutcheon, Dara P. S.
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [35] Energy level engineering in InAs quantum dot nanostructures
    Rebohle, L
    Schrey, FF
    Hofer, S
    Strasser, G
    Unterrainer, K
    APPLIED PHYSICS LETTERS, 2002, 81 (11) : 2079 - 2081
  • [36] QUANTUM EFFECTS IN TYPE-II SUPERCONDUCTORS
    ZIMMERMAN, JE
    SILVER, AH
    PHYSICS LETTERS, 1964, 10 (01): : 47 - 48
  • [37] Magnetoexcitons in type-II quantum dots
    A. B. Kalameitsev
    V. M. Kovalev
    A. O. Govorov
    Journal of Experimental and Theoretical Physics Letters, 1998, 68 : 669 - 672
  • [38] Type-II quantum cascade lasers
    Yang, RQ
    Lin, CH
    Yang, BH
    Zhang, D
    Murry, SJ
    Pei, SS
    Bewley, WW
    Olafsen, LJ
    Aifer, EH
    Felix, CL
    Vurgaftman, I
    Meyer, JR
    IN-PLANE SEMICONDUCTOR LASERS: FROM ULTRAVIOLET TO MID-INFRARED II, 1998, 3284 : 308 - 317
  • [39] Magnetoexcitons in type-II quantum dots
    Kalameitsev, AB
    Kovalev, VM
    Govorov, AO
    JETP LETTERS, 1998, 68 (08) : 669 - 672
  • [40] Quantum Dot Emission Driven by Mie Resonances in Silicon Nanostructures
    Rutckaia, Viktoriia
    Heyrot, Frank
    Novikov, Alexey
    Shaleev, Mikhail
    Petrov, Mihail
    Schilling, Joerg
    NANO LETTERS, 2017, 17 (11) : 6886 - 6892