Blueshifts of the emission energy in type-II quantum dot and quantum ring nanostructures

被引:21
|
作者
Hodgson, P. D. [1 ]
Young, R. J. [1 ]
Kamarudin, M. Ahmad [1 ,2 ]
Carrington, P. J. [1 ]
Krier, A. [1 ]
Zhuang, Q. D. [1 ]
Smakman, E. P. [3 ]
Koenraad, P. M. [3 ]
Hayne, M. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Univ Putra Malaysia, Dept Phys, Upm Serdang 43400, Selangor Darul, Malaysia
[3] Eindhoven Univ Technol, Dept Appl Phys, NL-5612 AZ Eindhoven, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
LASERS; PHOTOLUMINESCENCE; LOCALIZATION; TEMPERATURE; DEPENDENCE; WELLS;
D O I
10.1063/1.4818834
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have studied the ensemble photoluminescence (PL) of 11 GaSb/GaAs quantum dot/ring (QD/QR) samples over >= 5 orders of magnitude of laser power. All samples exhibit a blueshift of PL energy, Delta E, with increasing excitation power, as expected for type-II structures. It is often assumed that this blueshift is due to band-bending at the type-II interface. However, for a sample where charge-state sub-peaks are observed within the PL emission, it is unequivocally shown that the blueshift due to capacitive charging is an order of magnitude larger than the band bending contribution. Moreover, the size of the blueshift and its linear dependence on occupancy predicted by a simple capacitive model are faithfully replicated in the data. In contrast, when QD/QR emission intensity, I, is used to infer QD/QR occupancy, n, via the bimolecular recombination approximation (I alpha n(2)), exponents, x, in Delta E alpha I-x are consistently lower than expected, and strongly sample dependent. We conclude that the exponent x cannot be used to differentiate between capacitive charging and band bending as the origin of the blueshift in type-II QD/QRs, because the bimolecular recombination is not applicable to type-II QD/QRs. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [2] Exciton in type-II quantum dot
    Sierra-Ortega, J.
    Escorcia, R. A.
    Mikhailov, I. D.
    XIX LATIN AMERICAN SYMPOSIUM ON SOLID STATE PHYSICS (SLAFES), 2009, 167
  • [3] Type-I to Type-II Transformation of Hybrid Quantum Nanostructures
    Chen, Hsuan-An
    Lin, Wei-Hsun
    Chang, Chiao-Yun
    Chang, Shu-Wei
    Shih, Min-Hsiung
    Lin, Shih-Yen
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (05)
  • [4] Magnetoluminescence from trion and biexciton in type-II quantum dot
    Okuyama, Rin
    Eto, Mikio
    Hyuga, Hiroyuki
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 6
  • [5] A THEORY FOR EXCITONS IN TYPE-II QUANTUM-DOT SYSTEMS
    RORISON, JM
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (07) : 1470 - 1474
  • [6] Magnetoluminescence from trion and biexciton in type-II quantum dot
    Rin Okuyama
    Mikio Eto
    Hiroyuki Hyuga
    Nanoscale Research Letters, 6
  • [7] Enhancement of carrier lifetimes in type-II quantum dot/quantum well hybrid structures
    Couto, O. D. D., Jr.
    de Almeida, P. T.
    dos Santos, G. E.
    Balanta, M. A. G.
    Andriolo, H. F.
    Brum, J. A.
    Brasil, M. J. S. P.
    Iikawa, F.
    Liang, B. L.
    Huffaker, D. L.
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (08)
  • [8] Type-II InAs/GaAsSb/GaAs Quantum Dots as Artificial Quantum Dot Molecules
    Klenovsky, P.
    Krapek, V.
    Humlicek, J.
    ACTA PHYSICA POLONICA A, 2016, 129 (1A) : A62 - A65
  • [9] TYPE-II BROKEN-GAP QUANTUM WIRES AND QUANTUM DOT ARRAYS - A NOVEL CONCEPT FOR SELF-DOPING SEMICONDUCTOR NANOSTRUCTURES
    SERCEL, PC
    VAHALA, KJ
    APPLIED PHYSICS LETTERS, 1990, 57 (15) : 1569 - 1571
  • [10] Coexistence of type-I and type-II band alignments in antimony-incorporated InAsSb quantum dot nanostructures
    Mazur, Yu. I.
    Dorogan, V. G.
    Salamo, G. J.
    Tarasov, G. G.
    Liang, B. L.
    Reyner, C. J.
    Nunna, K.
    Huffaker, D. L.
    APPLIED PHYSICS LETTERS, 2012, 100 (03)