Approximation theorems for set-valued stochastic integrals

被引:3
|
作者
Kisielewicz, Michal [1 ]
机构
[1] Univ Zielona Gora, Podgorna 50, PL-65246 Zielona Gora, Poland
关键词
set-valued stochastic processes; set-valued stochastic integrals; approximation theorems; 60H05; 28B20; 47H04;
D O I
10.1080/07362994.2018.1426468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article is devoted to new properties of Aumann, Lebesgue, and Ito set-valued stochastic integrals considered in papers [1,2]. In particular, it contains some approximation theorems for Aumann and Ito set-valued stochastic integrals. Hence, in particular, it follows that Aumann and Lebesgue set-valued stochastic integrals cover a.s., both for measurable and IF-nonanticipative integrably bounded set-valued stochastic processes.
引用
收藏
页码:495 / 520
页数:26
相关论文
共 50 条
  • [41] Minimax theorems for set-valued mappings
    Li, SJ
    Chen, GY
    Lee, GM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (01) : 183 - 199
  • [42] On set-valued stochastic integrals in an M-type 2 Banach space
    Zhang, Jinping
    Li, Shoumei
    Mitoma, Itaru
    Okazaki, Yoshiaki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) : 216 - 233
  • [43] Set-Valued Stochastic Integrals and Equations with Respect to Two-Parameter Martingales
    Michta, Mariusz
    Swiatek, Kamil Lukasz
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (01) : 40 - 66
  • [44] APPROXIMATION OF CONVEX SET-VALUED FUNCTIONS
    VITALE, RA
    JOURNAL OF APPROXIMATION THEORY, 1979, 26 (04) : 301 - 316
  • [45] GENERALIZED FUZZY INTEGRALS OF SET-VALUED FUNCTIONS
    ZHANG, D
    GUO, C
    FUZZY SETS AND SYSTEMS, 1995, 76 (03) : 365 - 373
  • [46] On the best approximation of set-valued functions
    Ginchev, I
    Hoffmann, A
    RECENT ADVANCES IN OPTIMIZATION, 1997, 452 : 61 - 74
  • [47] Atoms of monotone set-valued measures and integrals
    Wu, Jian-Rong
    Kai, Xue-Wen
    Li, Jiao-Jiao
    FUZZY SETS AND SYSTEMS, 2016, 304 : 131 - 139
  • [48] Integrals of set-valued functions with a countable range
    Khan, MA
    Sun, Y
    MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (04) : 946 - 954
  • [49] APPROXIMATION OF NONCONVEX SET-VALUED MAPS
    BENELMECHAIEKH, H
    DEGUIRE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (05): : 379 - 384
  • [50] On the Optimal Recovery of Integrals of Set-Valued Functions
    Babenko, V. F.
    Babenko, V. V.
    Polishchuk, M. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (09) : 1306 - 1315