APPROXIMATION OF CONVEX SET-VALUED FUNCTIONS

被引:33
|
作者
VITALE, RA
机构
关键词
D O I
10.1016/0021-9045(79)90067-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:301 / 316
页数:16
相关论文
共 50 条
  • [1] Korovkin-type approximation of set-valued functions with convex graphs
    Campiti, Michele
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 51 - 55
  • [2] On the best approximation of set-valued functions
    Ginchev, I
    Hoffmann, A
    RECENT ADVANCES IN OPTIMIZATION, 1997, 452 : 61 - 74
  • [3] APPROXIMATION OF SET-VALUED FUNCTIONS BY CONTINUOUS FUNCTIONS
    OLECH, C
    COLLOQUIUM MATHEMATICUM, 1968, 19 (02) : 285 - &
  • [4] SEMIGROUPS OF MIDPOINT CONVEX SET-VALUED FUNCTIONS
    SMAJDOR, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1995, 46 (1-2): : 161 - 170
  • [5] The Lipschitzianity of convex vector and set-valued functions
    Vu Anh Tuan
    Christiane Tammer
    Constantin Zălinescu
    TOP, 2016, 24 : 273 - 299
  • [6] The Lipschitzianity of convex vector and set-valued functions
    Vu Anh Tuan
    Tammer, Christiane
    Zlinescu, Constantin
    TOP, 2016, 24 (01) : 273 - 299
  • [7] Korovkin approximation for weighted set-valued functions
    Roth, W
    JOURNAL OF APPROXIMATION THEORY, 1999, 100 (01) : 94 - 112
  • [8] Nonlinear Chebyshev approximation to set-valued functions
    Hugo Cuenya, Hector
    Eduardo Levis, Fabian
    OPTIMIZATION, 2016, 65 (08) : 1519 - 1529
  • [9] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Samuel Drapeau
    Andreas H. Hamel
    Michael Kupper
    Set-Valued and Variational Analysis, 2016, 24 : 253 - 275
  • [10] Complete Duality for Quasiconvex and Convex Set-Valued Functions
    Drapeau, Samuel
    Hamel, Andreas H.
    Kupper, Michael
    SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (02) : 253 - 275