Advances in proteomics data analysis and display using an accurate mass and time tag approach

被引:260
|
作者
Zimmer, JSD
Monroe, ME
Qian, WJ
Smith, RD
机构
[1] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA
[2] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
关键词
FTICR-MS; proteomics; AMT tag; SPICAT; QCET; PhIST;
D O I
10.1002/mas.20071
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Proteomics has recently demonstrated utility for increasing the understanding of cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled with high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:450 / 482
页数:33
相关论文
共 50 条
  • [31] A proteomic study of the HUPO Plasma Proteome Project's pilot samples using an accurate mass and time tag strategy
    Adkins, JN
    Monroe, ME
    Auberry, KJ
    Shen, YF
    Jacobs, JM
    Camp, DG
    Vitzthum, F
    Rodland, KD
    Zangar, RC
    Smith, RD
    Pounds, JG
    PROTEOMICS, 2005, 5 (13) : 3454 - 3466
  • [32] Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics
    马斌
    Journal of Computer Science & Technology, 2010, 25 (01) : 107 - 123
  • [33] Bioinformatics in mass spectrometry data analysis for proteomics studies
    Cristoni, S
    Bernardi, LR
    EXPERT REVIEW OF PROTEOMICS, 2004, 1 (04) : 469 - 483
  • [34] Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics
    Bin Ma
    Journal of Computer Science and Technology, 2010, 25 : 107 - 123
  • [35] Machine Learning for Mass Spectrometry Data Analysis in Proteomics
    Li, Juntao
    Zhou, Kanglei
    Mu, Bingyu
    CURRENT PROTEOMICS, 2021, 18 (05) : 620 - 634
  • [36] Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata
    Gatto, Laurent
    Breckels, Lisa M.
    Wieczorek, Samuel
    Burger, Thomas
    Lilley, Kathryn S.
    BIOINFORMATICS, 2014, 30 (09) : 1322 - 1324
  • [37] Comparative proteomics of salivary glands of Anopheles culicifacies mosquitoes using tandem mass tag (TMT) mass spectrometry
    Rawal, Ritu
    Vijay, Sonam
    Kadian, Kavita
    Adak, Tridibesh
    Pande, Veena
    Sharma, Arun
    JOURNAL OF VECTOR BORNE DISEASES, 2018, 55 (02) : 98 - 110
  • [38] A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics
    Webb-Robertson, Bobbie-Jo M.
    Cannon, William R.
    Oehmen, Christopher S.
    Shah, Anuj R.
    Gurumoorthi, Vidhya
    Lipton, Mary S.
    Waters, Katrina M.
    BIOINFORMATICS, 2008, 24 (13) : 1503 - 1509
  • [39] How proteomics Big Data will Transform Mass Spectrometry Data Analysis
    Bandeira, Nuno
    MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (08) : S32 - S32
  • [40] Time series: a data analysis approach using R
    Shanmugam, Ramalingam
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (09) : 1907 - 1908