NCBI GEO: archive for high-throughput functional genomic data

被引:739
|
作者
Barrett, Tanya [1 ]
Troup, Dennis B. [1 ]
Wilhite, Stephen E. [1 ]
Ledoux, Pierre [1 ]
Rudnev, Dmitry [1 ]
Evangelista, Carlos [1 ]
Kim, Irene F. [1 ]
Soboleva, Alexandra [1 ]
Tomashevsky, Maxim [1 ]
Marshall, Kimberly A. [1 ]
Phillippy, Katherine H. [1 ]
Sherman, Patti M. [1 ]
Muertter, Rolf N. [1 ]
Edgar, Ron [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
MICROARRAY DATA; STANDARDS; CELLS; INFORMATION; EXPRESSION;
D O I
10.1093/nar/gkn764
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as 'Minimum Information About a Microarray Experiment' (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.
引用
收藏
页码:D885 / D890
页数:6
相关论文
共 50 条
  • [31] Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials
    Yang, Yang
    Lin, Tian
    Weng, Xiao L.
    Darr, Jawwad A.
    Wang, Xue Z.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (04) : 671 - 678
  • [32] High-Throughput Genomic Data Reveal Complex Phylogenetic Relationships in Stylosanthes Sw (Leguminosae)
    Oliveira, Maria Alice Silva
    Nunes, Tomaz
    Dos Santos, Maria Aparecida
    Ferreira Gomes, Danyelle
    Costa, Iara
    Van-Lume, Brena
    Marques Da Silva, Sarah S.
    Oliveira, Ronaldo Simao
    Simon, Marcelo F.
    Lima, Gaus S. A.
    Gissi, Danilo Soares
    Almeida, Cicero Carlos de Souza
    Souza, Gustavo
    Marques, Andre
    FRONTIERS IN GENETICS, 2021, 12
  • [33] Glbase: A framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data
    Hutchins A.P.
    Jauch R.
    Dyla M.
    Miranda-Saavedra D.
    Cell Regeneration, 3 (1) : 3:1
  • [34] Clinical application of genomic high-throughput data: Infrastructural, ethical, legal and psychosocial aspects
    Umbach, Nadine
    Beissbarth, Tim
    Bleckmann, Annalen
    Duttge, Gunnar
    Flatau, Laura
    Koenig, Alexander
    Kuhn, Jessica
    Perera-Bel, Julia
    Roschauer, Julia
    Schulze, Thomas G.
    Schweda, Mark
    Urban, Alexander
    Zimmermann, Anja
    Sax, Ulrich
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2020, 31 : 1 - 15
  • [35] Bio-Express: Cloud service for high-throughput analysis of genomic big data
    Kim, Pan-Gyu
    Ko, GunHwan
    Song, Wangho
    Lee, Byungwook
    Kim, Seon-Young
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 300 - 300
  • [36] SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis
    Kahn, Ari B.
    Ryan, Michael C.
    Liu, Hongfang
    Zeeberg, Barry R.
    Jamison, D. Curtis
    Weinstein, John N.
    BMC BIOINFORMATICS, 2007, 8
  • [37] High-throughput screening service for submicroscopic genomic imbalance
    Ahn, JW
    Hallam, A
    Ogilvie, CM
    Mann, K
    JOURNAL OF MEDICAL GENETICS, 2005, 42 : S76 - S76
  • [38] HIGH-THROUGHPUT GENOMIC SURVEILLANCE OF PLASMODIUM INFECTIONS IN INDIA
    Rao, Pavitra N.
    Uplekar, Swapna
    Mallick, Prashant K.
    Bandyopadhyay, Nabamita
    Kale, Sonal
    Hathaway, Nicholas J.
    Eapen, Alex
    Singh, Ranvir
    Pradhan, Khageswar
    Bailey, Jeffrey A.
    Singh, Om P.
    Carlton, Jane M.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2017, 95 (05): : 589 - 589
  • [39] High-Throughput Genomic Analysis in Waldenstrom's Macroglobulinemia
    Poulain, Stephanie
    Braggio, Esteban
    Roumier, Christophe
    Aijjou, Rachid
    Broucqsault, Natacha
    Galiegue-Zouitina, Sylvie
    Manier, Salomon
    Soenen, Valerie
    Nibourel, Olivier
    Duthilleul, Patrick
    Fonseca, Rafael
    Leleu, Xavier
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2011, 11 (01): : 106 - 108
  • [40] Editorial: High-Throughput Phenotyping in the Genomic Improvement of Livestock
    Silva, Fabyano Fonseca
    Morota, Gota
    Rosa, Guilherme Jordao de Magalhaes
    FRONTIERS IN GENETICS, 2021, 12