NCBI GEO: archive for high-throughput functional genomic data

被引:739
|
作者
Barrett, Tanya [1 ]
Troup, Dennis B. [1 ]
Wilhite, Stephen E. [1 ]
Ledoux, Pierre [1 ]
Rudnev, Dmitry [1 ]
Evangelista, Carlos [1 ]
Kim, Irene F. [1 ]
Soboleva, Alexandra [1 ]
Tomashevsky, Maxim [1 ]
Marshall, Kimberly A. [1 ]
Phillippy, Katherine H. [1 ]
Sherman, Patti M. [1 ]
Muertter, Rolf N. [1 ]
Edgar, Ron [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
MICROARRAY DATA; STANDARDS; CELLS; INFORMATION; EXPRESSION;
D O I
10.1093/nar/gkn764
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as 'Minimum Information About a Microarray Experiment' (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.
引用
收藏
页码:D885 / D890
页数:6
相关论文
共 50 条
  • [21] Detecting genomic deletions from high-throughput sequence data with unsupervised learning
    Li X.
    Wu Y.
    BMC Bioinformatics, 2022, 23 (Suppl 8)
  • [22] Molecular Pathways: Extracting Medical Knowledge from High-Throughput Genomic Data
    Goldstein, Theodore C.
    Paull, Evan O.
    Ellis, Matthew J.
    Stuart, Joshua M.
    CLINICAL CANCER RESEARCH, 2013, 19 (12) : 3114 - 3120
  • [23] Orchestrating high-throughput genomic analysis with Bioconductor
    Huber W.
    Carey V.J.
    Gentleman R.
    Anders S.
    Carlson M.
    Carvalho B.S.
    Bravo H.C.
    Davis S.
    Gatto L.
    Girke T.
    Gottardo R.
    Hahne F.
    Hansen K.D.
    Irizarry R.A.
    Lawrence M.
    Love M.I.
    MaCdonald J.
    Obenchain V.
    Oles̈ A.K.
    Pagès H.
    Reyes A.
    Shannon P.
    Smyth G.K.
    Tenenbaum D.
    Waldron L.
    Morgan M.
    Nature Methods, 2015, 12 (2) : 115 - 121
  • [24] Orchestrating high-throughput genomic analysis with Bioconductor
    Huber, Wolfgang
    Carey, Vincent J.
    Gentleman, Robert
    Anders, Simon
    Carlson, Marc
    Carvalho, Benilton S.
    Bravo, Hector Corrada
    Davis, Sean
    Gatto, Laurent
    Girke, Thomas
    Gottardo, Raphael
    Hahne, Florian
    Hansen, Kasper D.
    Irizarry, Rafael A.
    Lawrence, Michael
    Love, Michael I.
    MacDonald, James
    Obenchain, Valerie
    Oles, Andrzej K.
    Pages, Herve
    Reyes, Alejandro
    Shannon, Paul
    Smyth, Gordon K.
    Tenenbaum, Dan
    Waldron, Levi
    Morgan, Martin
    NATURE METHODS, 2015, 12 (02) : 115 - 121
  • [25] Functional genomic analysis of cellular morphology using high-throughput RNAi screens.
    Kiger, A
    Baum, B
    Armknecht, S
    Chang, M
    Jones, M
    Coulson, A
    Jones, S
    Sönnichsen, B
    Echeverri, C
    Perrimon, N
    DEVELOPMENTAL BIOLOGY, 2002, 247 (02) : 480 - 480
  • [26] CAMS - A high-throughput compound archive management system.
    Feinstein, RD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U607 - U607
  • [27] Identification of functional modules using network topology and high-throughput data
    Ulitsky, Igor
    Shamir, Ron
    BMC SYSTEMS BIOLOGY, 2007, 1
  • [28] hipFG: high-throughput harmonization and integration pipeline for functional genomics data
    Cifello, Jeffrey
    Kuksa, Pavel P.
    Saravanan, Naveensri
    Valladares, Otto
    Wang, Li-San
    Leung, Yuk Yee
    BIOINFORMATICS, 2023, 39 (11)
  • [29] High-throughput nanoprecipitation of functional polymers
    Schubert, Stephanie
    Vollrath, Antje
    Perevyazko, Igor
    Pietsch, Christian
    Delaney, Joseph T.
    Pavlov, Georges M.
    Schubert, Ulrich S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [30] ArrayExpress update-an archive of microarray and high-throughput sequencing-based functional genomics experiments
    Parkinson, Helen
    Sarkans, Ugis
    Kolesnikov, Nikolay
    Abeygunawardena, Niran
    Burdett, Tony
    Dylag, Miroslaw
    Emam, Ibrahim
    Farne, Anna
    Hastings, Emma
    Holloway, Ele
    Kurbatova, Natalja
    Lukk, Margus
    Malone, James
    Mani, Roby
    Pilicheva, Ekaterina
    Rustici, Gabriella
    Sharma, Anjan
    Williams, Eleanor
    Adamusiak, Tomasz
    Brandizi, Marco
    Sklyar, Nataliya
    Brazma, Alvis
    NUCLEIC ACIDS RESEARCH, 2011, 39 : D1002 - D1004