Hardy-Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis

被引:3
|
作者
Stepanov, V. D. [1 ,2 ]
Ushakova, E. P. [1 ,2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
[2] Russian Acad Sci, Comp Ctr, Far Eastern Branch, Khabarovsk 680000, Russia
基金
俄罗斯科学基金会;
关键词
Sobolev space; Hardy-Steklov operator; duality principle; DECREASING FUNCTIONS; BOUNDEDNESS; CONE;
D O I
10.1134/S0001434619010103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Estimates of the norms of spaces associated to weighted first-order Sobolev spaces with various weight functions and summation parameters are established. As the main technical tool, boundedness criteria for the Hardy-Steklov integral operator with variable limits of integration in Lebesgue spaces on the real axis are used.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 47 条
  • [1] Hardy–Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
    V. D. Stepanov
    E. P. Ushakova
    Mathematical Notes, 2019, 105 : 91 - 103
  • [2] Hardy-Steklov Operators and Duality Principle in Weighted Sobolev Spaces of the First Order
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 97 (03) : 232 - 235
  • [3] Hardy–Steklov Operators and Duality Principle in Weighted Sobolev Spaces of the First Order
    V. D. Stepanov
    E. P. Ushakova
    Doklady Mathematics, 2018, 97 : 232 - 235
  • [4] Weighted inequalities for Hardy-Steklov operators
    Bernardis, A. L.
    Martin-Reyes, F. J.
    Salvador, P. Ortega
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (02): : 276 - 295
  • [5] Weighted modular inequalities for Hardy-Steklov operators
    Ortega Salvador, Pedro
    Ramirez Torreblanca, Consuelo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 803 - 814
  • [6] HARDY-STEKLOV OPERATORS ON TOPOLOGICAL MEASURE SPACES
    Mynbaev, Kairat t.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 601 - 612
  • [7] Hardy-Steklov operators and Sobolev-type embedding inequalities
    Nasyrova, M. G.
    Ushakova, E. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) : 228 - 254
  • [8] A duality principle in weighted Sobolev spaces on the real line
    Eveson, Simon P.
    Stepanov, Vladimir D.
    Ushakova, Elena P.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 877 - 897
  • [9] MIXED TYPE WEIGHTED INTEGRAL INEQUALITIES FOR THE HARDY-STEKLOV INTEGRAL OPERATORS
    Haloi, Rajib
    Chutia, Duranta
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 789 - 807
  • [10] ON BOUNDEDNESS OF A CERTAIN CLASS OF HARDY-STEKLOV TYPE OPERATORS IN LEBESGUE SPACES
    Stepanov, V. D.
    Ushakova, E. P.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (01): : 28 - 52