Statistics of two-dimensional random walks, the cyclic sieving phenomenon and the Hofstadter model

被引:1
|
作者
Mashkevich, Stefan [1 ,2 ]
Ouvry, Stephane [3 ,4 ]
Polychronakos, Alexios [3 ,5 ]
机构
[1] Schrodinger, New York, NY 10036 USA
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, Fac Sci Orsay, F-91405 Orsay, France
[5] CUNY, Grad Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
random walks; cyclic sieving; Hofstadter model;
D O I
10.1088/1751-8113/48/40/405001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We focus on the algebraic area probability distribution of planar random walks on a square lattice with m(1), m(2), l(1) and l(2) steps right, left, up and down. We aim, in particular, at the algebraic area generating function Z(m1,m2,l1,l2) (Q) evaluated at Q = e2i pi/q, a root of unity, when both m(1) - m(2) and l(1) - l(2) are multiples of q. In the simple case of staircase walks, a geometrical interpretation of Z(m,0,l,0) (e2i pi/q) in terms of the cyclic sieving phenomenon is illustrated. Then, an expression for Z(m1,m2,l1,l2) (-1), which is relevant to the Stembridge case, is proposed. Finally, the related problem of evaluating the nth moments of the Hofstadter Hamiltonian in the commensurate case is addressed.
引用
收藏
页数:14
相关论文
共 50 条