Statistics of two-dimensional random walks, the cyclic sieving phenomenon and the Hofstadter model

被引:1
|
作者
Mashkevich, Stefan [1 ,2 ]
Ouvry, Stephane [3 ,4 ]
Polychronakos, Alexios [3 ,5 ]
机构
[1] Schrodinger, New York, NY 10036 USA
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, Fac Sci Orsay, F-91405 Orsay, France
[5] CUNY, Grad Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
random walks; cyclic sieving; Hofstadter model;
D O I
10.1088/1751-8113/48/40/405001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We focus on the algebraic area probability distribution of planar random walks on a square lattice with m(1), m(2), l(1) and l(2) steps right, left, up and down. We aim, in particular, at the algebraic area generating function Z(m1,m2,l1,l2) (Q) evaluated at Q = e2i pi/q, a root of unity, when both m(1) - m(2) and l(1) - l(2) are multiples of q. In the simple case of staircase walks, a geometrical interpretation of Z(m,0,l,0) (e2i pi/q) in terms of the cyclic sieving phenomenon is illustrated. Then, an expression for Z(m1,m2,l1,l2) (-1), which is relevant to the Stembridge case, is proposed. Finally, the related problem of evaluating the nth moments of the Hofstadter Hamiltonian in the commensurate case is addressed.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] A COMPUTATIONAL FRAMEWORK FOR TWO-DIMENSIONAL RANDOM WALKS WITH RESTARTS
    Bini, Dario A.
    Massei, Stefano
    Meini, Beatrice
    Robol, Leonardo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04): : A2108 - A2133
  • [12] The confined random walks in two-dimensional bounded domain
    Ciftci, H.
    Cakmak, M.
    EPL, 2009, 87 (06)
  • [13] CLUSTER FORMATION IN TWO-DIMENSIONAL RANDOM-WALKS
    ROSENSTOCK, HB
    MARQUARDT, CL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 439 - 439
  • [14] ON A REMARKABLE CLASS OF TWO-DIMENSIONAL RANDOM-WALKS
    WIEGEL, FW
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (08) : 2111 - 2113
  • [15] Limit theorems for one and two-dimensional random walks in random scenery
    Castell, Fabienne
    Guillotin-Plantard, Nadine
    Pene, Francoise
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (02): : 506 - 528
  • [16] RANDOM GEOMETRY AND THE STATISTICS OF TWO-DIMENSIONAL CELLS
    DROUFFE, JM
    ITZYKSON, C
    NUCLEAR PHYSICS B, 1984, 235 (01) : 45 - 53
  • [17] Area Distribution of Two-Dimensional Random Walks on a Square Lattice
    Mashkevich, Stefan
    Ouvry, Stephane
    JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (01) : 71 - 78
  • [18] The Hitting Distribution of a Line Segment for Two-Dimensional Random Walks
    Kôhei Uchiyama
    Journal of Theoretical Probability, 2016, 29 : 1661 - 1684
  • [19] ON TWO-DIMENSIONAL SELF-AVOIDING RANDOM-WALKS
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02): : 455 - 468
  • [20] A CENTRAL LIMIT THEOREM FOR TWO-DIMENSIONAL RANDOM WALKS IN A CONE
    Garbit, Rodolphe
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2011, 139 (02): : 271 - 286