Statistics of two-dimensional random walks, the cyclic sieving phenomenon and the Hofstadter model

被引:1
|
作者
Mashkevich, Stefan [1 ,2 ]
Ouvry, Stephane [3 ,4 ]
Polychronakos, Alexios [3 ,5 ]
机构
[1] Schrodinger, New York, NY 10036 USA
[2] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[4] Univ Paris 11, CNRS, Lab Phys Theor & Modeles Stat, Fac Sci Orsay, F-91405 Orsay, France
[5] CUNY, Grad Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
random walks; cyclic sieving; Hofstadter model;
D O I
10.1088/1751-8113/48/40/405001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We focus on the algebraic area probability distribution of planar random walks on a square lattice with m(1), m(2), l(1) and l(2) steps right, left, up and down. We aim, in particular, at the algebraic area generating function Z(m1,m2,l1,l2) (Q) evaluated at Q = e2i pi/q, a root of unity, when both m(1) - m(2) and l(1) - l(2) are multiples of q. In the simple case of staircase walks, a geometrical interpretation of Z(m,0,l,0) (e2i pi/q) in terms of the cyclic sieving phenomenon is illustrated. Then, an expression for Z(m1,m2,l1,l2) (-1), which is relevant to the Stembridge case, is proposed. Finally, the related problem of evaluating the nth moments of the Hofstadter Hamiltonian in the commensurate case is addressed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The area distribution of two-dimensional random walks and non-Hermitian Hofstadter quantum mechanics
    Matveenko, Sergey
    Ouvry, Stephane
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (18)
  • [2] Deterministic Random Walks on the Two-Dimensional Grid
    Doerr, Benjamin
    Friedrich, Tobias
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2): : 123 - 144
  • [3] DIFFUSION ON TWO-DIMENSIONAL RANDOM-WALKS
    DEKEYSER, R
    MARITAN, A
    STELLA, A
    PHYSICAL REVIEW LETTERS, 1987, 58 (17) : 1758 - 1760
  • [4] DIFFUSION ON TWO-DIMENSIONAL RANDOM-WALKS
    MANNA, SS
    GUTTMANN, AJ
    HUGHES, BD
    PHYSICAL REVIEW A, 1989, 39 (08) : 4337 - 4340
  • [5] Deterministic random walks on the two-dimensional grid
    Doerr, Benjamin
    Friedrich, Tobias
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2006, 4288 : 474 - +
  • [6] Two-Dimensional Random Interlacements and Late Points for Random Walks
    Francis Comets
    Serguei Popov
    Marina Vachkovskaia
    Communications in Mathematical Physics, 2016, 343 : 129 - 164
  • [7] Two-Dimensional Random Interlacements and Late Points for Random Walks
    Comets, Francis
    Popov, Serguei
    Vachkovskaia, Marina
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (01) : 129 - 164
  • [8] Two-dimensional parameter estimation using two-dimensional cyclic statistics
    Wang, Fei
    Wang, Shu-Xun
    Dou, Hui-Jing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2003, 31 (10): : 1522 - 1525
  • [9] TWO-DIMENSIONAL RANDOM-WALKS OF DIATOMIC CLUSTERS
    WRIGLEY, JD
    EHRLICH, G
    JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (10): : 5936 - 5954
  • [10] Decoherence in two-dimensional quantum random walks with traps
    Gonulol, Meltem
    Aydiner, Ekrem
    Mustecaplioglu, Ozgur E.
    PHYSICAL REVIEW A, 2009, 80 (02):