Eternal domination on prisms of graphs

被引:0
|
作者
Krim-Yee, Aaron [1 ]
Seamone, Ben [2 ,3 ]
Virgile, Virgelot [4 ]
机构
[1] McGill Univ, Dept Bioengn, Montreal, PQ, Canada
[2] Dawson Coll, Math Dept, Montreal, PQ, Canada
[3] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ, Canada
[4] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graph protection; Eternal domination; Clique covers; Cartesian product of graphs;
D O I
10.1016/j.dam.2020.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An eternal dominating set of a graph G is a set of vertices (or "guards'') which dominates G and which can defend any infinite series of vertex attacks, where an attack is defended by moving one guard along an edge from its current position to the attacked vertex. The size of the smallest eternal dominating set is denoted gamma(infinity)(G) and is called the eternal domination number of G. In this paper, we answer a conjecture of Klostermeyer and Mynhardt [Discussiones Mathematicae Graph Theory, vol. 35, pp. 283-300], showing that there exist infinitely many graphs G such that gamma(infinity)(G) = theta(G) and gamma(infinity)(G square K-2) < theta(G square K-2), where theta(G) denotes the clique cover number of G. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:734 / 736
页数:3
相关论文
共 50 条
  • [41] On eternal domination and Vizing-type inequalities
    Driscoll, Keith
    Klostermeyer, William F.
    Krop, Elliot
    Magnant, Colton
    Taylor, Patrick
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 708 - 712
  • [42] Graphs that are simultaneously efficient open domination and efficient closed domination graphs
    Klavzar, Sandi
    Peterin, Iztok
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 613 - 621
  • [43] On Eternal Domination of Generalized Js']Js,m
    Shaheen, Ramy
    Assaad, Mohammad
    Kassem, Ali
    JOURNAL OF APPLIED MATHEMATICS, 2021, 2021
  • [44] An Upper Bound for the Eternal Roman Domination Number
    Brewster, Richard
    Macgillivray, Gary
    Williams, Ethan
    MATHEMATICS, 2025, 13 (03)
  • [45] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [46] Unique irredundance, domination and independent domination in graphs
    Fischermann, M
    Volkmann, L
    Zverovich, I
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 190 - 200
  • [47] On Secure Domination in Graphs
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 786 - 790
  • [48] On the signed domination in graphs
    Matousek, J
    COMBINATORICA, 2000, 20 (01) : 103 - 108
  • [49] Domination in Circulant Graphs
    Rad, Nader Jafari
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 169 - 176
  • [50] Partial Domination in Graphs
    Angsuman Das
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1713 - 1718