Eternal domination on prisms of graphs

被引:0
|
作者
Krim-Yee, Aaron [1 ]
Seamone, Ben [2 ,3 ]
Virgile, Virgelot [4 ]
机构
[1] McGill Univ, Dept Bioengn, Montreal, PQ, Canada
[2] Dawson Coll, Math Dept, Montreal, PQ, Canada
[3] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ, Canada
[4] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graph protection; Eternal domination; Clique covers; Cartesian product of graphs;
D O I
10.1016/j.dam.2020.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An eternal dominating set of a graph G is a set of vertices (or "guards'') which dominates G and which can defend any infinite series of vertex attacks, where an attack is defended by moving one guard along an edge from its current position to the attacked vertex. The size of the smallest eternal dominating set is denoted gamma(infinity)(G) and is called the eternal domination number of G. In this paper, we answer a conjecture of Klostermeyer and Mynhardt [Discussiones Mathematicae Graph Theory, vol. 35, pp. 283-300], showing that there exist infinitely many graphs G such that gamma(infinity)(G) = theta(G) and gamma(infinity)(G square K-2) < theta(G square K-2), where theta(G) denotes the clique cover number of G. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:734 / 736
页数:3
相关论文
共 50 条
  • [21] DOMINATION, ETERNAL DOMINATION AND CLIQUE COVERING
    Klostermeyer, William F.
    Mynhardt, C. M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (02) : 283 - 300
  • [22] Eternal domination in trees
    Klostermeyer, William F.
    MacGillivray, Gary
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2014, 91 : 31 - 50
  • [23] Restrained Domination in Complementary Prisms
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    UTILITAS MATHEMATICA, 2011, 86 : 267 - 278
  • [24] ECCENTRIC DOMINATION IN COMPLEMENTARY PRISMS
    Bhanumathi, M.
    Abirami, R. Meenal
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 32 : 43 - 53
  • [25] Independent Domination in Complementary Prisms
    Gongora, Joel A.
    Haynes, Teresa W.
    Jum, Ernest
    UTILITAS MATHEMATICA, 2013, 91 : 3 - 12
  • [26] TOTAL DOMINATION IN GENERALIZED PRISMS AND A NEW DOMINATION INVARIANT
    Tepeh, Aleksandra
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1165 - 1178
  • [27] Double Domination in Complementary Prisms
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Vaughan, Lamont
    UTILITAS MATHEMATICA, 2013, 91 : 131 - 142
  • [28] ETERNAL DOMINATION: CRITICALITY AND REACHABILITY
    Klostermeyer, William F.
    MacGillivray, Gary
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 63 - 77
  • [29] Eternal domination and clique covering
    MacGillivray, Gary
    Mynhardt, C. M.
    Virgile, Virgelot
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 603 - 624
  • [30] Total and Paired Domination Stability in Prisms
    Gorzkowska, Aleksandra
    Henning, Michael A.
    Pilsniak, Monika
    Tumidajewicz, Elzbieta
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 1147 - 1169