Eternal domination on prisms of graphs

被引:0
|
作者
Krim-Yee, Aaron [1 ]
Seamone, Ben [2 ,3 ]
Virgile, Virgelot [4 ]
机构
[1] McGill Univ, Dept Bioengn, Montreal, PQ, Canada
[2] Dawson Coll, Math Dept, Montreal, PQ, Canada
[3] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ, Canada
[4] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graph protection; Eternal domination; Clique covers; Cartesian product of graphs;
D O I
10.1016/j.dam.2020.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An eternal dominating set of a graph G is a set of vertices (or "guards'') which dominates G and which can defend any infinite series of vertex attacks, where an attack is defended by moving one guard along an edge from its current position to the attacked vertex. The size of the smallest eternal dominating set is denoted gamma(infinity)(G) and is called the eternal domination number of G. In this paper, we answer a conjecture of Klostermeyer and Mynhardt [Discussiones Mathematicae Graph Theory, vol. 35, pp. 283-300], showing that there exist infinitely many graphs G such that gamma(infinity)(G) = theta(G) and gamma(infinity)(G square K-2) < theta(G square K-2), where theta(G) denotes the clique cover number of G. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:734 / 736
页数:3
相关论文
共 50 条
  • [1] Partial domination in prisms of graphs
    Nithya, Leo Philo
    Kureethara, Joseph Varghese
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 855 - 862
  • [2] Partial domination in prisms of graphs
    Nithya, Leo Philo
    Kureethara, Joseph Varghese
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 855 - 862
  • [3] Partial domination in prisms of graphs
    Nithya, Leo Philo
    Kureethara, Joseph Varghese
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 855 - 862
  • [4] Eternal Total Domination in Graphs
    Klostermeyer, William F.
    Mynhardt, C. M.
    ARS COMBINATORIA, 2012, 107 : 473 - 492
  • [5] Domination in Prisms of Graphs: Universal Fixers
    Mynhardt, C. M.
    Xu, Zhixia
    UTILITAS MATHEMATICA, 2009, 78 : 185 - 201
  • [6] TRIPLE CONNECTED ETERNAL DOMINATION IN GRAPHS
    Mahadevan, G.
    Ponnuchamy, T.
    Avadayappan, Selvam
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 88 - 95
  • [7] Graphs with equal eternal vertex cover and eternal domination numbers
    Klostermeyer, William F.
    Mynhardt, C. M.
    DISCRETE MATHEMATICS, 2011, 311 (14) : 1371 - 1379
  • [8] DISTANCE 2-DOMINATION IN PRISMS OF GRAPHS
    Hurtado, Ferran
    Mora, Merce
    Rivera-Campo, Eduardo
    Zuazua, Rita
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 383 - 397
  • [9] m-Eternal total domination in graphs
    Pushpam, P. Roushini Leely
    Shanthi, P. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (03)
  • [10] Eternal Distance-k Domination on Graphs
    Cox D.
    Meger E.
    Messinger M.E.
    La Matematica, 2023, 2 (2): : 283 - 302