Nonmonotonic fracture behavior of polymer nanocomposites

被引:9
|
作者
de Castro, J. G. [1 ]
Zargar, R. [1 ]
Habibi, M. [1 ]
Varol, S. H. [2 ]
Parekh, S. H. [2 ]
Hosseinkhani, B. [3 ]
Adda-Bedia, M. [4 ]
Bonn, D. [1 ]
机构
[1] Univ Amsterdam, Inst Phys, Van der Waals Zeeman Inst, NL-1098 XH Amsterdam, Netherlands
[2] Max Planck Inst Polymer Res, Dept Mol Spect, D-55128 Mainz, Germany
[3] SKF Engn & Res Ctr, NL-3430 DT Nieuwegein, Netherlands
[4] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
关键词
RUBBER; ELASTOMERS; BREAKING; STRESS; SILICA; RATES;
D O I
10.1063/1.4922287
中图分类号
O59 [应用物理学];
学科分类号
摘要
Polymer composite materials are widely used for their exceptional mechanical properties, notably their ability to resist large deformations. Here, we examine the failure stress and strain of rubbers reinforced by varying amounts of nano-sized silica particles. We find that small amounts of silica increase the fracture stress and strain, but too much filler makes the material become brittle and consequently fracture happens at small deformations. We thus find that as a function of the amount of filler there is an optimum in the breaking resistance at intermediate filler concentrations. We use a modified Griffith theory to establish a direct relation between the material properties and the fracture behavior that agrees with the experiment. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Thermoelectric Behavior of Segregated-Network Polymer Nanocomposites
    Yu, Choongho
    Kim, Yeon Seok
    Kim, Dasaroyong
    Grunlan, Jaime C.
    NANO LETTERS, 2008, 8 (12) : 4428 - 4432
  • [42] Special features of the mechanical behavior of polymer/organoclay nanocomposites
    Dzhangurazov B.Zh.
    Kozlov G.V.
    Zaikov G.E.
    Mikitaev A.K.
    International Journal of Nanomechanics Science and Technology, 2010, 1 (01): : 31 - 47
  • [43] Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites
    Hassanzadeh-Aghdam, M. K.
    Ansari, R.
    Mahmoodi, M. J.
    Darvizeh, A.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 162 : 93 - 100
  • [44] ELECTRON BEHAVIOR AND MAGNETIC-PROPERTIES OF POLYMER NANOCOMPOSITES
    GODOVSKI, DY
    THERMAL AND ELECTRICAL CONDUCTIVITY OF POLYMER MATERIALS, 1995, 119 : 79 - 122
  • [45] Mechanical Behavior of Polymer Nanocomposites:: a discrete simulation approach
    Chabert, E
    Gauthier, C
    Dendievel, R
    Chazeau, L
    Cavaillé, JY
    NANOMATERIALS FOR STRUCTURAL APPLICATIONS, 2003, 740 : 155 - 160
  • [46] Characterization and modeling of mechanical behavior of polymer/clay nanocomposites
    Luo, JJ
    Daniel, IM
    COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) : 1607 - 1616
  • [47] Experimental investigation of tensile creep behavior of polymer nanocomposites
    V. Devasenapathi
    P. Monish
    S. Balasivanandha Prabu
    The International Journal of Advanced Manufacturing Technology, 2009, 44 : 412 - 418
  • [48] Relaxation behavior in clay-reinforced polymer nanocomposites
    A. L. Sharma
    Awalendra K. Thakur
    Ionics, 2015, 21 : 1561 - 1575
  • [49] Rheological behavior of hyperbranched polymer/montmorillonite clay nanocomposites
    Rodlert, M
    Plummer, CJG
    Leterrier, Y
    Månson, JAE
    Grünbauer, HJM
    JOURNAL OF RHEOLOGY, 2004, 48 (05) : 1049 - 1065
  • [50] Modelling the Mechanical Behavior of Polymer-Based Nanocomposites
    Correia, Alexandre
    Mohsen Valashani, S.
    Pires, Francisco
    Simoes, Ricardo
    ADVANCED MATERIALS FORUM VI, PTS 1 AND 2, 2013, 730-732 : 543 - +