Nonmonotonic fracture behavior of polymer nanocomposites

被引:9
|
作者
de Castro, J. G. [1 ]
Zargar, R. [1 ]
Habibi, M. [1 ]
Varol, S. H. [2 ]
Parekh, S. H. [2 ]
Hosseinkhani, B. [3 ]
Adda-Bedia, M. [4 ]
Bonn, D. [1 ]
机构
[1] Univ Amsterdam, Inst Phys, Van der Waals Zeeman Inst, NL-1098 XH Amsterdam, Netherlands
[2] Max Planck Inst Polymer Res, Dept Mol Spect, D-55128 Mainz, Germany
[3] SKF Engn & Res Ctr, NL-3430 DT Nieuwegein, Netherlands
[4] Ecole Normale Super, Phys Stat Lab, F-75231 Paris 05, France
关键词
RUBBER; ELASTOMERS; BREAKING; STRESS; SILICA; RATES;
D O I
10.1063/1.4922287
中图分类号
O59 [应用物理学];
学科分类号
摘要
Polymer composite materials are widely used for their exceptional mechanical properties, notably their ability to resist large deformations. Here, we examine the failure stress and strain of rubbers reinforced by varying amounts of nano-sized silica particles. We find that small amounts of silica increase the fracture stress and strain, but too much filler makes the material become brittle and consequently fracture happens at small deformations. We thus find that as a function of the amount of filler there is an optimum in the breaking resistance at intermediate filler concentrations. We use a modified Griffith theory to establish a direct relation between the material properties and the fracture behavior that agrees with the experiment. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Fracture Mechanisms and Toughness in Polymer Nanocomposites: A Brief Review
    Stern, Theodor
    Marom, Gad
    JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (10):
  • [22] The fracture toughness of polymer cellulose nanocomposites using the essential work of fracture method
    M. Shir Mohammadi
    C. Hammerquist
    J. Simonsen
    J. A. Nairn
    Journal of Materials Science, 2016, 51 : 8916 - 8927
  • [23] The fracture toughness of polymer cellulose nanocomposites using the essential work of fracture method
    Mohammadi, M. Shir
    Hammerquist, C.
    Simonsen, J.
    Nairn, J. A.
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (19) : 8916 - 8927
  • [24] Modeling the Effect of Polymer Chain Stiffness on the Behavior of Polymer Nanocomposites
    Burgos-Marmol, J. Javier
    Alvarez-Machancoses, Oscar
    Patti, Alessandro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (25): : 6245 - 6256
  • [25] Tensile and fracture behavior of polymer foams
    Kabir, Md. E.
    Saha, M. C.
    Jeelani, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 429 (1-2): : 225 - 235
  • [26] Modeling the phase behavior of polymer/clay nanocomposites
    Balazs, AC
    Singh, C
    Zhulina, E
    Lyatskaya, Y
    ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (08) : 651 - 657
  • [27] Mechanical behavior of polymer and ceramic matrix nanocomposites
    Siegel, RW
    Chang, SK
    Ash, BJ
    Stone, J
    Ajayan, PM
    Doremus, RW
    Schadler, LS
    SCRIPTA MATERIALIA, 2001, 44 (8-9) : 2061 - 2064
  • [28] Electron behavior and magnetic properties of polymer nanocomposites
    Godovski, D.Yu.
    Advances in Polymer Science, 1995, 119 : 78 - 122
  • [29] Diffusion behavior in polymer-clay nanocomposites
    Sorrentino, A
    Tortora, M
    Vittoria, V
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (02) : 265 - 274
  • [30] Network model for the viscoelastic behavior of polymer nanocomposites
    Sarvestani, AS
    Picu, CR
    POLYMER, 2004, 45 (22) : 7779 - 7790