Regular sphere packings

被引:2
|
作者
Harborth, H [1 ]
Szabó, L
Ujváry-Menyhárt, Z
机构
[1] Tech Univ Braunschweig, Diskrete Math, D-38023 Braunschweig, Germany
[2] Eotvos Lorand Univ, Dept Geometry, H-1053 Budapest, Hungary
[3] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Natural Number; Boundary Point; Sphere Packing; Regular Sphere; Congruent Sphere;
D O I
10.1007/s00013-002-8219-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A collection of non-overlapping spheres in the space is called a packing. Two spheres are said to be neighbours if they have a boundary point in common. A packing is called k-regular if each sphere has exactly k neighbours. We are concerned with the following question. What is the minimum number of not necessarily congruent spheres which may form a k-regular packing? In general, for which natural numbers n and k does there exist a connected k-regular packing of exactly n spheres?
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [41] A jamming plane of sphere packings
    Jin, Yuliang
    Yoshino, Hajime
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (14)
  • [42] RECTIFICATION AND ABSORPTION WITH REGULAR PACKINGS
    BOMIO, P
    GHELFI, L
    RUTTI, A
    SPIEGEL, L
    MULLER, B
    CHEMISCHE TECHNIK, 1991, 43 (11-12): : 409 - 415
  • [43] Regular Packings on Periodic Lattices
    Ras, Tadeus
    Schilling, Rolf
    Weigel, Martin
    PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [44] Packings in dense regular graphs
    Kühn, D
    Osthus, D
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 325 - 337
  • [45] LIQUID ENTRAINMENT IN REGULAR PACKINGS
    SPEKULJAK, Z
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1985, 12 (06) : 719 - 735
  • [46] ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS
    Jenssen, Matthew
    Joos, Felix
    Perkins, Will
    FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [47] Energy Transport in Jammed Sphere Packings
    Xu, Ning
    Vitelli, Vincenzo
    Wyart, Matthieu
    Liu, Andrea J.
    Nagel, Sidney R.
    PHYSICAL REVIEW LETTERS, 2009, 102 (03)
  • [48] Finite and Uniform Stability of Sphere Packings
    A. Bezdek
    K. Bezdek
    R. Connelly
    Discrete & Computational Geometry, 1998, 20 : 111 - 130
  • [49] SOME SPHERE PACKINGS IN HIGHER SPACE
    LEECH, J
    CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (04): : 657 - &
  • [50] GLOBAL FIELDS, CODES AND SPHERE PACKINGS
    TSFASMAN, MA
    ASTERISQUE, 1991, (198) : 373 - 396