Control of Untethered Soft Grippers for Pick-and-Place Tasks

被引:0
|
作者
Ongaro, Federico [1 ]
Yoon, ChangKyu [4 ]
van den Brink, Frank [1 ]
Abayazid, Momen [1 ]
Oh, Seung Hyun [5 ]
Gracias, David H. [4 ,5 ]
Misra, Sarthak [1 ,2 ,3 ]
机构
[1] Univ Twente, MIRA Inst Biomed Technol & Tech Med, Dept Biomech Engn, Surg Robot Lab, NL-7500 AE Enschede, Netherlands
[2] Univ Groningen, Dept Biomed Engn, NL-9700 AB Groningen, Netherlands
[3] Univ Med Ctr Groningen, Groningen, Netherlands
[4] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In order to handle complex tasks in hard-to-reach environments, small-scale robots have to possess suitable dexterous and untethered control capabilities. The fabrication and manipulation of soft, small-scale grippers complying to these requirements is now made possible by advances in material science and robotics. In this paper, we use soft, smallscale grippers to demonstrate pick-and-place tasks. The precise remote control is obtained by altering both the magnetic field gradient and the temperature in the workspace. This allows us to regulate the position and grasping configuration of the soft thermally-responsive hydrogel-nanoparticle composite magnetic grippers. The magnetic closed-loop control achieves precise localization with an average region-of-convergence of the gripper of 0.12 +/- 0.05 mm. The micro-sized payload can be placed with a positioning error of 0.57 +/- 0.33 mm. The soft grippers move with an average velocity of 0.72 +/- 0.13 mm/s without a micro-sized payload, and at 1.09 +/- 0.07 mm/s with a micro-sized payload.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [41] Realization of highly energy efficient pick-and-place tasks using resonance-based robot motion control
    Matsusaka, Kento
    Uemura, Mitsunori
    Kawamura, Sadao
    Advanced Robotics, 2016, 30 (09): : 608 - 620
  • [42] A Motion Control Design of Pick-and-place Machine Based on DSP
    Long, Xuming
    Cui, Xiaolu
    Huang, Hao
    Zhan, Mingtao
    Li, Weijun
    Zhang, Zhimin
    Yan, Ming
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 311 - 314
  • [43] Realization of highly energy efficient pick-and-place tasks using resonance-based robot motion control
    Matsusaka, Kento
    Uemura, Mitsunori
    Kawamura, Sadao
    ADVANCED ROBOTICS, 2016, 30 (09) : 608 - 620
  • [44] Control of an 2-DOF electromagnetic actuator for high precision and high-throughput pick-and-place tasks
    Chen, Si-Lu
    Teo, Tat Joo
    Yang, Guilin
    2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 146 - 151
  • [45] Approximation Algorithms for Pick-and-Place Robots
    Anand Srivastav
    Hartmut Schroeter
    Christoph Michel
    Annals of Operations Research, 2001, 107 : 321 - 338
  • [46] Panasonic Launches Pick-and-Place Tech
    不详
    MANUFACTURING ENGINEERING, 2024, 172 (05):
  • [47] Approximation algorithms for pick-and-place robots
    Srivastav, A
    Schroeter, H
    Michel, C
    ANNALS OF OPERATIONS RESEARCH, 2001, 107 (1-4) : 321 - 338
  • [48] Pick-and-place robot handles nanofibres
    不详
    SENSOR REVIEW, 2008, 28 (01) : 80 - 81
  • [49] Autonomous Robotic Pick-and-Place of Microobjects
    Zhang, Yong
    Chen, Brandon K.
    Liu, Xinyu
    Sun, Yu
    IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (01) : 200 - 207
  • [50] Autonomous pick-and-place using the dVRK
    D'Ettorre, Claudia
    Stilli, Agostino
    Dwyer, George
    Tran, Maxine
    Stoyanov, Danail
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (07) : 1141 - 1149