Real-Time 6D Object Pose Estimation on CPU

被引:0
|
作者
Konishi, Yoshinori [1 ,2 ]
Hattori, Kosuke [1 ,2 ]
Hashimoto, Manabu [3 ]
机构
[1] OMRON Corp, Kyoto, Japan
[2] SenseTime Japan Ltd, Kyoto, Japan
[3] Chukyo Univ, Dept Engn, Nagoya, Aichi, Japan
关键词
3D; RECOGNITION;
D O I
10.1109/iros40897.2019.8967967
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a fast and accurate 6D object pose estimation from a RGB-D image. Our proposed method is template matching based and consists of three main technical components, PCOF-MOD (multimodal PCOF), balanced pose tree (BPT) and optimum memory rearrangement for a coarse-to-fine search. Our model templates on densely sampled viewpoints and PCOF-MOD which explicitly handles a certain range of 3D object pose improve the robustness against background clutters. BPT which is an efficient tree-based data structures for a large number of templates and template matching on rearranged feature maps where nearby features are linearly aligned accelerate the pose estimation. The experimental evaluation on tabletop and bin-picking dataset showed that our method achieved higher accuracy and faster speed in comparison with state-of-the-art techniques including recent CNN based approaches. Moreover, our model templates can be trained solely from 3D CAD in a few minutes and the pose estimation run in near real-time (23 fps) on CPU. These features are suitable for any real applications.
引用
收藏
页码:3451 / 3458
页数:8
相关论文
共 50 条
  • [41] Selective Embedding with Gated Fusion for 6D Object Pose Estimation
    Shantong Sun
    Rongke Liu
    Qiuchen Du
    Shuqiao Sun
    Neural Processing Letters, 2020, 51 : 2417 - 2436
  • [42] Temporally Consistent Object 6D Pose Estimation for Robot Control
    Zorina, Kateryna
    Priban, Vojtech
    Fourmy, Mederic
    Sivic, Josef
    Petrik, Vladimir
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 56 - 63
  • [43] 6D Object Pose Estimation With Color/Geometry Attention Fusion
    Yuan, Honglin
    Veltkamp, Remco C.
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 529 - 535
  • [44] Hybrid 6D Object Pose Estimation from the RGB Image
    Staszak, Rafal
    Belter, Dominik
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 541 - 549
  • [45] Rigidity-Aware Detection for 6D Object Pose Estimation
    Hai, Yang
    Song, Rui
    Li, Jiaojiao
    Salzmann, Mathieu
    Hu, Yinlin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8927 - 8936
  • [46] HybridPose: 6D Object Pose Estimation under Hybrid Representations
    Song, Chen
    Song, Jiaru
    Huang, Qixing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 428 - 437
  • [47] Spatial Attention Improves Iterative 6D Object Pose Estimation
    Stevsic, Stefan
    Hilliges, Otmar
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 1070 - 1078
  • [48] Multi Task-Guided 6D Object Pose Estimation
    Thu-Uyen Nguyen
    Van-Duc Vu
    Van-Thiep Nguyen
    Ngoc-Anh Hoang
    Duy-Quang Vu
    Duc-Thanh Tran
    Khanh-Toan Phan
    Anh-Truong Mai
    Van-Hiep Duong
    Cong-Trinh Chan
    Ngoc-Trung Ho
    Quang-Tri Duong
    Phuc-Quan Ngo
    Dinh-Cuong Hoang
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 215 - 222
  • [49] Accurate 6D Object Pose Estimation and Refinement in Cluttered Scenes
    Jin, Yixiang
    Rossiter, John Anthony
    Veres, Sandor M.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ROBOTICS, COMPUTER VISION AND INTELLIGENT SYSTEMS (ROBOVIS), 2021, : 31 - 39
  • [50] Object 6D Pose Estimation with Non-local Attention
    Mei, Jianhan
    Ding, Henghui
    Jiang, Xudong
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519