Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

被引:48
|
作者
Yu, Shiqin [1 ,2 ]
Plan, Manuel R. [3 ,4 ]
Winter, Gal [1 ,2 ,5 ]
Kromer, Jens O. [1 ,2 ]
机构
[1] Univ Queensland, Ctr Microbial Electrochem Syst CEMES, Brisbane, Qld, Australia
[2] Univ Queensland, Adv Water Management Ctr, Brisbane, Qld, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld, Australia
[4] Univ Queensland, Metabol Australia Queensland Node, Brisbane, Qld, Australia
[5] Univ New England, Sch Sci & Technol, Armidale, NSW, Australia
基金
澳大利亚研究理事会;
关键词
ENTNER-DOUDOROFF PATHWAY; SHIKIMATE PATHWAY; ESCHERICHIA-COLI; CHORISMATE LYASE; MUCONIC ACID; PHENYLALANINE; GLUCOSE; SITES; BIOPRODUCTION; AROMATICS;
D O I
10.3389/fbioe.2016.00090
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by gene aroG(D146N) were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L-1 and a carbon yield of 18.1% (C-mol C-mol(-1)) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Global features of the Pseudomonas putida KT2440 genome sequence
    Weinel, C
    Nelson, KE
    Tümmler, B
    ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (12) : 809 - 818
  • [42] Transport and kinase activities of CbrA of Pseudomonas putida KT2440
    Wirtz, Larissa
    Eder, Michelle
    Schipper, Kerstin
    Rohrer, Stefanie
    Jung, Heinrich
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [43] Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440
    Regenhardt, D
    Heuer, H
    Heim, S
    Fernandez, DU
    Strömpl, C
    Moore, ERB
    Timmis, KN
    ENVIRONMENTAL MICROBIOLOGY, 2002, 4 (12) : 912 - 915
  • [44] Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440
    Klein, Andreas Sebastian
    Brass, Hannah Ursula Clara
    Klebl, David Paul
    Classen, Thomas
    Loeschcke, Anita
    Drepper, Thomas
    Sievers, Sonja
    Jaeger, Karl-Erich
    Pietruszka, Joerg
    CHEMBIOCHEM, 2018, 19 (14) : 1545 - 1552
  • [45] Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane
    Ting Gong
    Xiaoqing Xu
    You Che
    Ruihua Liu
    Weixia Gao
    Fengjie Zhao
    Huilei Yu
    Jingnan Liang
    Ping Xu
    Cunjiang Song
    Chao Yang
    Scientific Reports, 7
  • [46] A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration
    Linde F. C. Kampers
    Jasper J. Koehorst
    Ruben J. A. van Heck
    Maria Suarez-Diez
    Alfons J. M. Stams
    Peter J. Schaap
    BMC Microbiology, 21
  • [47] "Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440" (vol 59, pg 64, 2020)
    Bentley, Gayle J.
    Narayanan, Niju
    Jha, Ramesh K.
    Salvachua, Davinia
    Elmore, Joshua R.
    Peabody, George L.
    Black, Brenna A.
    Ramirez, Kelsey
    De Capite, Annette
    Michener, William E.
    Werner, Allison Z.
    Klingeman, Dawn M.
    Schindel, Heidi S.
    Nelson, Robert
    Foust, Lindsey
    Guss, Adam M.
    Dale, Taraka
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2022, 72 : 66 - 67
  • [48] Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate
    Yang, Jeongmo
    Im, Yeongeun
    Kim, Tae Hwan
    Lee, Myeong Jun
    Cho, Sukhyeong
    Na, Jeong-geol
    Lee, Jinwon
    Oh, Byung-keun
    ENZYME AND MICROBIAL TECHNOLOGY, 2020, 132
  • [49] Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis
    Nikel, Pablo I.
    de Lorenzo, Victor
    NEW BIOTECHNOLOGY, 2014, 31 (06) : 562 - 571
  • [50] Improvement in Salt Tolerance Ability of Pseudomonas putida KT2440
    Fan, Min
    Tan, Shuyu
    Wang, Wei
    Zhang, Xuehong
    BIOLOGY-BASEL, 2024, 13 (06):