Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

被引:48
|
作者
Yu, Shiqin [1 ,2 ]
Plan, Manuel R. [3 ,4 ]
Winter, Gal [1 ,2 ,5 ]
Kromer, Jens O. [1 ,2 ]
机构
[1] Univ Queensland, Ctr Microbial Electrochem Syst CEMES, Brisbane, Qld, Australia
[2] Univ Queensland, Adv Water Management Ctr, Brisbane, Qld, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld, Australia
[4] Univ Queensland, Metabol Australia Queensland Node, Brisbane, Qld, Australia
[5] Univ New England, Sch Sci & Technol, Armidale, NSW, Australia
基金
澳大利亚研究理事会;
关键词
ENTNER-DOUDOROFF PATHWAY; SHIKIMATE PATHWAY; ESCHERICHIA-COLI; CHORISMATE LYASE; MUCONIC ACID; PHENYLALANINE; GLUCOSE; SITES; BIOPRODUCTION; AROMATICS;
D O I
10.3389/fbioe.2016.00090
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by gene aroG(D146N) were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L-1 and a carbon yield of 18.1% (C-mol C-mol(-1)) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440
    Manzanera, M
    de Castro, AG
    Tondervik, A
    Rayner-Brandes, M
    Strom, AR
    Tunnacliffe, A
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (09) : 4328 - 4333
  • [22] A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440
    Zhang, Yiting
    Liu, Honglu
    Liu, Yujie
    Huo, Kaiyue
    Wang, Shufang
    Liu, Ruihua
    Yang, Chao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 191 : 608 - 617
  • [23] Engineering Pseudomonas putida KT2440 for Dipicolinate Production via the Entner-Doudoroff Pathway
    Wang, Yihan
    Zheng, Jie
    Xue, Yubin
    Yu, Bo
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (12) : 6500 - 6508
  • [24] Copper and cadmium: responses in Pseudomonas putida KT2440
    Miller, C. D.
    Pettee, B.
    Zhang, C.
    Pabst, M.
    McLean, J. E.
    Anderson, A. J.
    LETTERS IN APPLIED MICROBIOLOGY, 2009, 49 (06) : 775 - 783
  • [25] Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
    Askitosari, Theresia D.
    Berger, Carola
    Tiso, Till
    Harnisch, Falk
    Blank, Lars M.
    Rosenbaum, Miriam A.
    MICROORGANISMS, 2020, 8 (12) : 1 - 15
  • [26] Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440
    Nikel, Pablo I.
    Kim, Juhyun
    de Lorenzo, Victor
    ENVIRONMENTAL MICROBIOLOGY, 2014, 16 (01) : 239 - 254
  • [27] Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440
    Fernandez, Matilde
    Conde, Susana
    de la Torre, Jesus
    Molina-Santiago, Carlos
    Ramos, Juan-Luis
    Duque, Estrella
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (02) : 1001 - 1009
  • [28] Genetic Code Expansion in Pseudomonas putida KT2440
    He, Xinyuan
    Gao, Tianyu
    Chen, Yan
    Liu, Kun
    Guo, Jiantao
    Niu, Wei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (11): : 3724 - 3732
  • [29] Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering
    Liu, Honglu
    Chen, Yaping
    Zhang, Yiting
    Zhao, Wanwan
    Guo, Hongfu
    Wang, Siqi
    Xia, Wenjie
    Wang, Shufang
    Liu, Ruihua
    Yang, Chao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 209 : 117 - 124
  • [30] Metabolic engineering strategies of Pseudomonas putida KT2440 for biocatalysis under conditions with restricted oxygen supply
    Nikel, Pablo I.
    de Lorenzo, Victor
    NEW BIOTECHNOLOGY, 2012, 29 : S30 - S30