On sub-Riemannian geodesics on the Engel groups: Hamilton's equations

被引:6
|
作者
Adams, Malcolm R. [1 ]
Tie, Jingzhi [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Engel groups; Heisenberg groups; Martinet vector fields; Hamiltonian formalism; sub-Riemannian geodesics; elliptic integrals;
D O I
10.1002/mana.201200259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sub-Riemannian geometry on the Engel group which is a step 3 nilpotent Lie group on R4. Our main result is to solve the Hamiltonian equations associated with the bi-characteristic curves and express the solutions in terms of elliptic functions. Our model covers both the Heisenberg group and the Martinet case when setting certain parameters to be zero.
引用
收藏
页码:1381 / 1406
页数:26
相关论文
共 50 条
  • [31] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Yu. L. Sachkov
    Differential Equations, 2021, 57 : 1550 - 1554
  • [32] Sub-Riemannian Geodesics on the 3-D Sphere
    Chang, Der-Chen
    Markina, Irina
    Vasil'ev, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (02) : 361 - 377
  • [33] CUT TIME IN SUB-RIEMANNIAN PROBLEM ON ENGEL GROUP
    Ardentov, A. A.
    Sachkov, Yu. L.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (04) : 958 - 988
  • [34] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [35] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [36] Variational aspects of the geodesics problem in sub-Riemannian geometry
    Piccione, P
    Tausk, DV
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (03) : 183 - 206
  • [37] Geodesics in the sub-Riemannian problem on the group SO(3)
    Beschastnyi, I. Yu.
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2016, 207 (07) : 915 - 941
  • [38] Geodesics on a certain step 2 sub-Riemannian manifold
    Calin, O
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 22 (04) : 317 - 339
  • [39] An Extrinsic Approach to Sub-Riemannian Geodesics on the Orthogonal Group
    Huper, Knut
    Markina, Irina
    Leite, Fatima Silva
    CONTROLO 2020, 2021, 695 : 274 - 283
  • [40] Sub-Riemannian Geodesics on the 3-D Sphere
    Der-Chen Chang
    Irina Markina
    Alexander Vasil’ev
    Complex Analysis and Operator Theory, 2009, 3 : 361 - 377