On sub-Riemannian geodesics on the Engel groups: Hamilton's equations

被引:6
|
作者
Adams, Malcolm R. [1 ]
Tie, Jingzhi [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Engel groups; Heisenberg groups; Martinet vector fields; Hamiltonian formalism; sub-Riemannian geodesics; elliptic integrals;
D O I
10.1002/mana.201200259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sub-Riemannian geometry on the Engel group which is a step 3 nilpotent Lie group on R4. Our main result is to solve the Hamiltonian equations associated with the bi-characteristic curves and express the solutions in terms of elliptic functions. Our model covers both the Heisenberg group and the Martinet case when setting certain parameters to be zero.
引用
收藏
页码:1381 / 1406
页数:26
相关论文
共 50 条
  • [21] Characterizations of Hamiltonian geodesics in sub-Riemannian geometry
    Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac, Cedex, France
    J Dyn Control Syst, 3 (391-418):
  • [22] Shortest and straightest geodesics in sub-Riemannian geometry
    Alekseevsky, Dmitri
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [23] THE PROBLEM OF GEODESICS IN SINGULAR SUB-RIEMANNIAN GEOMETRY
    PELLETIER, F
    BOUCHE, LV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (01): : 71 - 76
  • [24] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Arguillere, Sylvain
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2897 - 2938
  • [25] Helical CR structures and sub-Riemannian geodesics
    D'Angelo, John P.
    Tyson, Jeremy T.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) : 205 - 221
  • [26] Sub-Riemannian Geodesics on Nested Principal Bundles
    Godoy Molina, Mauricio
    Markina, Irina
    CONTROLO 2020, 2021, 695 : 82 - 92
  • [27] Stochastic sub-Riemannian geodesics on the Grushin distribution
    Calin, Ovidiu
    Udriste, Constantin
    Tevy, Ionel
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (02): : 37 - 49
  • [28] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Sylvain Arguillère
    The Journal of Geometric Analysis, 2020, 30 : 2897 - 2938
  • [29] Cut Locus in the Sub-Riemannian Problem on Engel Group
    A. A. Ardentov
    Yu. L. Sachkov
    Doklady Mathematics, 2018, 97 : 82 - 85
  • [30] Cut Locus in the Sub-Riemannian Problem on Engel Group
    Ardentov, A. A.
    Sachkov, Yu. L.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 82 - 85