On sub-Riemannian geodesics on the Engel groups: Hamilton's equations

被引:6
|
作者
Adams, Malcolm R. [1 ]
Tie, Jingzhi [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
Engel groups; Heisenberg groups; Martinet vector fields; Hamiltonian formalism; sub-Riemannian geodesics; elliptic integrals;
D O I
10.1002/mana.201200259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sub-Riemannian geometry on the Engel group which is a step 3 nilpotent Lie group on R4. Our main result is to solve the Hamiltonian equations associated with the bi-characteristic curves and express the solutions in terms of elliptic functions. Our model covers both the Heisenberg group and the Martinet case when setting certain parameters to be zero.
引用
收藏
页码:1381 / 1406
页数:26
相关论文
共 50 条
  • [1] Sub-Riemannian Engel Sphere
    Yu. L. Sachkov
    A. Yu. Popov
    Doklady Mathematics, 2021, 104 : 301 - 305
  • [2] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [3] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [4] LEFT-INVARIANT SUB-RIEMANNIAN ENGEL STRUCTURES: ABNORMAL GEODESICS AND INTEGRABILITY
    Beschastnyi, Ivan
    Medvedev, Alexandr
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3524 - 3537
  • [5] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [6] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    V. N. Berestovskii
    Siberian Mathematical Journal, 2018, 59 : 31 - 42
  • [7] Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
    Berestovskii, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 31 - 42
  • [8] End-point equations and regularity of sub-Riemannian geodesics
    Leonardi, Gian Paolo
    Monti, Roberto
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (02) : 552 - 582
  • [9] End-Point Equations and Regularity of Sub-Riemannian Geodesics
    Gian Paolo Leonardi
    Roberto Monti
    Geometric and Functional Analysis, 2008, 18 : 552 - 582
  • [10] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483