ALTERNATING EVOLUTION SCHEMES FOR HAMILTON-JACOBI EQUATIONS

被引:10
|
作者
Liu, Hailiang [1 ]
Pollack, Michael [1 ]
Saran, Haseena [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 01期
基金
美国国家科学基金会;
关键词
alternating evolution; Hamilton-Jacobi equations; viscosity solution; CENTRAL-UPWIND SCHEMES; FINITE-ELEMENT-METHOD; CENTRAL WENO SCHEMES; VISCOSITY SOLUTIONS;
D O I
10.1137/120862806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a high-resolution alternating evolution (AE) scheme to solve Hamilton-Jacobi equations. The construction of the AE scheme is based on an alternating evolution system of the Hamilton-Jacobi equation, following the idea previously developed for hyperbolic conservation laws. A semidiscrete scheme derives directly from a sampling of this system on alternating grids. Higher order accuracy is achieved by a combination of high order nonoscillatory polynomial reconstruction from the obtained grid values and a time discretization with matching accuracy. Local AE schemes are made possible by choosing the scale parameter epsilon to reflect the local distribution of waves. The AE schemes have the advantage of easy formulation and implementation and efficient computation of the solution. For the first local AE scheme and the second order local AE scheme with a limiter, we prove the numerical stability in the sense of satisfying the maximum principle. Numerical experiments for a set of Hamilton-Jacobi equations are presented to demonstrate both accuracy and capacity of these AE schemes.
引用
收藏
页码:A122 / A149
页数:28
相关论文
共 50 条
  • [31] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [32] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [33] Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains
    Barth, TJ
    Sethian, JA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) : 1 - 40
  • [34] Semi-discrete schemes for Hamilton-Jacobi equations on unstructured grids
    Levy, D
    Nayak, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 623 - 630
  • [35] HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES FOR HAMILTON-JACOBI EQUATIONS
    OSHER, S
    SHU, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 907 - 922
  • [36] VALUE ITERATION CONVERGENCE OF ε-MONOTONE SCHEMES FOR STATIONARY HAMILTON-JACOBI EQUATIONS
    Bokanowski, Olivier
    Falcone, Maurizio
    Ferretti, Roberto
    Gruene, Lars
    Kalise, Dante
    Zidani, Hasnaa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4041 - 4070
  • [37] High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations
    Lin, CT
    Tadmor, E
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2163 - 2186
  • [38] An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton-Jacobi Equations
    Ke, Guoyi
    Guo, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1023 - 1044
  • [39] New Finite Difference Hermite WENO Schemes for Hamilton-Jacobi Equations
    Zhu, Jun
    Zheng, Feng
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [40] High-order schemes for Hamilton-Jacobi equations on triangular meshes
    Li, XG
    Chan, CK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 227 - 241