ALTERNATING EVOLUTION SCHEMES FOR HAMILTON-JACOBI EQUATIONS

被引:10
|
作者
Liu, Hailiang [1 ]
Pollack, Michael [1 ]
Saran, Haseena [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 01期
基金
美国国家科学基金会;
关键词
alternating evolution; Hamilton-Jacobi equations; viscosity solution; CENTRAL-UPWIND SCHEMES; FINITE-ELEMENT-METHOD; CENTRAL WENO SCHEMES; VISCOSITY SOLUTIONS;
D O I
10.1137/120862806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a high-resolution alternating evolution (AE) scheme to solve Hamilton-Jacobi equations. The construction of the AE scheme is based on an alternating evolution system of the Hamilton-Jacobi equation, following the idea previously developed for hyperbolic conservation laws. A semidiscrete scheme derives directly from a sampling of this system on alternating grids. Higher order accuracy is achieved by a combination of high order nonoscillatory polynomial reconstruction from the obtained grid values and a time discretization with matching accuracy. Local AE schemes are made possible by choosing the scale parameter epsilon to reflect the local distribution of waves. The AE schemes have the advantage of easy formulation and implementation and efficient computation of the solution. For the first local AE scheme and the second order local AE scheme with a limiter, we prove the numerical stability in the sense of satisfying the maximum principle. Numerical experiments for a set of Hamilton-Jacobi equations are presented to demonstrate both accuracy and capacity of these AE schemes.
引用
收藏
页码:A122 / A149
页数:28
相关论文
共 50 条
  • [11] Numerical schemes for Hamilton-Jacobi equations on unstructured meshes
    Xiang-Gui Li
    Wei Yan
    C. K. Chan
    Numerische Mathematik, 2003, 94 : 315 - 331
  • [12] Control synthesis in grid schemes for Hamilton-Jacobi equations
    Tarasyev, AM
    ANNALS OF OPERATIONS RESEARCH, 1999, 88 (0) : 337 - 359
  • [13] Numerical schemes for Hamilton-Jacobi equations on unstructured meshes
    Li, XG
    Yan, W
    Chan, CK
    NUMERISCHE MATHEMATIK, 2003, 94 (02) : 315 - 331
  • [14] NUMERICAL SCHEMES FOR CONSERVATION LAWS VIA HAMILTON-JACOBI EQUATIONS
    CORRIAS, L
    FALCONE, M
    NATALINI, R
    MATHEMATICS OF COMPUTATION, 1995, 64 (210) : 555 - 580
  • [15] APPROXIMATION SCHEMES FOR CONSTRUCTING MINIMAX SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    TARASYEV, AM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1994, 58 (02): : 207 - 221
  • [16] Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations
    Zheng, Feng
    Shu, Chi-Wang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 337 : 27 - 41
  • [17] Approximation schemes for solving differential games and Hamilton-Jacobi equations
    Grigorieva, SV
    Ushakov, VN
    Uspenskii, AA
    CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 555 - 558
  • [19] Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes
    Zhu, Jun
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 254 : 76 - 92
  • [20] Central WENO schemes for Hamilton-Jacobi equations on triangular meshes
    Levy, Doron
    Nayak, Suhas
    Shu, Chi-Wang
    Zhang, Yong-Tao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06): : 2229 - 2247