The p-spectral radius of k-partite and k-chromatic uniform hypergraphs

被引:18
|
作者
Kang, L. [1 ]
Nikiforov, V. [2 ]
Yuan, X. [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
中国国家自然科学基金;
关键词
Uniform hypergraph; p-spectral radius; k-partite hypergraph; k-chromatic hypergraph; EXTREMAL PROBLEMS; GRAPHS;
D O I
10.1016/j.laa.2015.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The p-spectral radius of an r-uniform hypergraph G of order n is defined for every real number p >= 1 as [GRAPHICS] It generalizes several hypergraph parameters, including the Lagrangian, the spectral radius, and the number of edges. This paper presents solutions to several extremal problems about the p-spectral radius of k-partite and k-chromatic hypergraphs of order n. Two of the main results are: (I) Let k >= r >= 2, and let G be a k-partite r-graph of order n. For every p > 1, lambda((p)) (G) < lambda((p)) (T-k(gamma) (n)), unless G = T-k(gamma) (n), where T-k(gamma) (n) is the complete k-partite gamma-graph of order n, with parts of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular. (II) Let k >= 2, and let G be a k-chromatic 3-graph of order n. For every p >= 1, lambda((p)) (G) < lambda((p)) (Q(k)(3) (n)), unless G = Q(k)(3) (n), where Q(k)(3) (n) is a complete k-chromatic 3-graph of order n, with classes of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular The latter statement generalizes a result of Mubayi and Talbot. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 107
页数:27
相关论文
共 50 条
  • [31] RESTRICTED K-PARTITE PARTITIONS
    ROSELLE, DP
    MATHEMATISCHE NACHRICHTEN, 1966, 32 (3-4) : 139 - &
  • [32] SOME PROPERTIES OF THE p-SPECTRAL RADIUS ON TENSORS FOR GENERAL HYPERGRAPHS AND THEIR APPLICATIONS
    Zhang, Junh Ao
    Zhu, Zhongxun
    OPERATORS AND MATRICES, 2022, 16 (03): : 925 - 940
  • [33] A note on Hamilton l-cycle decomposition of complete k-partite hypergraphs
    Jiang, Taijiang
    Cai, Hongyan
    Sun, Qiang
    Zhang, Chao
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 214 - 219
  • [34] The maximum spectral radius of k-uniform hypergraphs with r pendent vertices
    Zhang, Jianbin
    Li, Jianping
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (05): : 1062 - 1073
  • [35] On finding k-cliques in k-partite graphs
    M. Mirghorbani
    P. Krokhmal
    Optimization Letters, 2013, 7 : 1155 - 1165
  • [36] SCORE SETS IN k-PARTITE TOURNAMENTS
    Pirzada, S.
    Naikoo, T. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2006, 22 (1-2) : 237 - 245
  • [37] Coloring k-partite sparse digraphs
    Harutyunyan, Ararat
    Harutyunyan, Louisa
    Hovhannisyan, Narek
    DISCRETE APPLIED MATHEMATICS, 2024, 353 : 1 - 3
  • [38] HAMILTONICITY IN BALANCED K-PARTITE GRAPHS
    CHEN, GT
    FAUDREE, RJ
    GOULD, RJ
    JACOBSON, MS
    LESNIAK, L
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 221 - 231
  • [39] Hamiltonian cycles in k-partite graphs
    DeBiasio, Louis
    Krueger, Robert A.
    Pritikin, Dan
    Thompson, Eli
    JOURNAL OF GRAPH THEORY, 2020, 94 (01) : 92 - 112
  • [40] On finding k-cliques in k-partite graphs
    Mirghorbani, M.
    Krokhmal, P.
    OPTIMIZATION LETTERS, 2013, 7 (06) : 1155 - 1165