The p-spectral radius of k-partite and k-chromatic uniform hypergraphs

被引:18
|
作者
Kang, L. [1 ]
Nikiforov, V. [2 ]
Yuan, X. [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
中国国家自然科学基金;
关键词
Uniform hypergraph; p-spectral radius; k-partite hypergraph; k-chromatic hypergraph; EXTREMAL PROBLEMS; GRAPHS;
D O I
10.1016/j.laa.2015.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The p-spectral radius of an r-uniform hypergraph G of order n is defined for every real number p >= 1 as [GRAPHICS] It generalizes several hypergraph parameters, including the Lagrangian, the spectral radius, and the number of edges. This paper presents solutions to several extremal problems about the p-spectral radius of k-partite and k-chromatic hypergraphs of order n. Two of the main results are: (I) Let k >= r >= 2, and let G be a k-partite r-graph of order n. For every p > 1, lambda((p)) (G) < lambda((p)) (T-k(gamma) (n)), unless G = T-k(gamma) (n), where T-k(gamma) (n) is the complete k-partite gamma-graph of order n, with parts of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular. (II) Let k >= 2, and let G be a k-chromatic 3-graph of order n. For every p >= 1, lambda((p)) (G) < lambda((p)) (Q(k)(3) (n)), unless G = Q(k)(3) (n), where Q(k)(3) (n) is a complete k-chromatic 3-graph of order n, with classes of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular The latter statement generalizes a result of Mubayi and Talbot. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 107
页数:27
相关论文
共 50 条
  • [21] Extremal problems for the p-spectral radius of Berge hypergraphs
    Zhou, Yacong
    Kang, Liying
    Liu, Lele
    Shan, Erfang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 600 (600) : 22 - 39
  • [22] Computing the p-Spectral Radii of Uniform Hypergraphs with Applications
    Jingya Chang
    Weiyang Ding
    Liqun Qi
    Hong Yan
    Journal of Scientific Computing, 2018, 75 : 1 - 25
  • [23] Learning Heuristics for Combinatorial Optimization Problems on K-Partite Hypergraphs
    Zouitine, Mehdi
    Berjaoui, Ahmad
    Lagnoux, Agnes
    Pellegrini, Clement
    Rachelson, Emmanuel
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, PT II, CPAIOR 2024, 2024, 14743 : 304 - 314
  • [24] Computing the p-Spectral Radii of Uniform Hypergraphs with Applications
    Chang, Jingya
    Ding, Weiyang
    Qi, Liqun
    Yan, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 1 - 25
  • [25] Detecting Communities in K-Partite K-Uniform (Hyper)Networks
    Xin Liu
    Tsuyoshi Murata
    Journal of Computer Science and Technology, 2011, 26 : 778 - 791
  • [26] On k-partite subgraphs
    Hofmeister, T
    Lefmann, H
    ARS COMBINATORIA, 1998, 50 : 303 - 308
  • [27] Detecting Communities in K-Partite K-Uniform (Hyper)Networks
    Liu, Xin
    Murata, Tsuyoshi
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2011, 26 (05) : 778 - 791
  • [28] Detecting Communities in K-Partite K-Uniform (Hyper)Networks
    刘欣
    Tsuyoshi Murata
    JournalofComputerScience&Technology, 2011, 26 (05) : 778 - 791
  • [29] On Finding and Enumerating Maximal and Maximum k-Partite Cliques in k-Partite Graphs
    Phillips, Charles A.
    Wang, Kai
    Baker, Erich J.
    Bubier, Jason A.
    Chesler, Elissa J.
    Langston, Michael A.
    ALGORITHMS, 2019, 12 (01)
  • [30] KINGS IN K-PARTITE TOURNAMENTS
    PETROVIC, V
    THOMASSEN, C
    DISCRETE MATHEMATICS, 1991, 98 (03) : 237 - 238