The p-spectral radius of k-partite and k-chromatic uniform hypergraphs

被引:18
|
作者
Kang, L. [1 ]
Nikiforov, V. [2 ]
Yuan, X. [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
中国国家自然科学基金;
关键词
Uniform hypergraph; p-spectral radius; k-partite hypergraph; k-chromatic hypergraph; EXTREMAL PROBLEMS; GRAPHS;
D O I
10.1016/j.laa.2015.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The p-spectral radius of an r-uniform hypergraph G of order n is defined for every real number p >= 1 as [GRAPHICS] It generalizes several hypergraph parameters, including the Lagrangian, the spectral radius, and the number of edges. This paper presents solutions to several extremal problems about the p-spectral radius of k-partite and k-chromatic hypergraphs of order n. Two of the main results are: (I) Let k >= r >= 2, and let G be a k-partite r-graph of order n. For every p > 1, lambda((p)) (G) < lambda((p)) (T-k(gamma) (n)), unless G = T-k(gamma) (n), where T-k(gamma) (n) is the complete k-partite gamma-graph of order n, with parts of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular. (II) Let k >= 2, and let G be a k-chromatic 3-graph of order n. For every p >= 1, lambda((p)) (G) < lambda((p)) (Q(k)(3) (n)), unless G = Q(k)(3) (n), where Q(k)(3) (n) is a complete k-chromatic 3-graph of order n, with classes of size left perpendicularn/kright perpendicular or inverted left perpendicularn/kinverted right perpendicular The latter statement generalizes a result of Mubayi and Talbot. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 107
页数:27
相关论文
共 50 条