Single-neuron criticality optimizes analog dendritic computation

被引:30
|
作者
Gollo, Leonardo L. [1 ,2 ]
Kinouchi, Osame [3 ,4 ]
Copelli, Mauro [4 ,5 ]
机构
[1] Inst Fis Interdisciplinar & Sistemas Complejos C, IFISC, E-07122 Palma de Mallorca, Spain
[2] Queensland Inst Med Res, Syst Neurosci Grp, Brisbane, Qld 4006, Australia
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeiraa Preto, BR-14040901 Ribeirao Preto, SP, Brazil
[4] Univ Fed Pernambuco, Ctr Nat & Artificial Informat Proc Syst USP, BR-50670901 Recife, PE, Brazil
[5] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
RANGE TEMPORAL CORRELATIONS; CORTICAL NETWORKS; DYNAMIC-RANGE; AVALANCHES; COMPLEX; POTENTIALS; ACTIVATION; MECHANISMS; PATTERNS; SPIKE;
D O I
10.1038/srep03222
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active dendritic branchlets enable the propagation of dendritic spikes, whose computational functions remain an open question. Here we propose a concrete function to the active channels in large dendritic trees. Modelling the input-output response of large active dendritic arbors subjected to complex spatio-temporal inputs and exhibiting non-stereotyped dendritic spikes, we find that the dendritic arbor can undergo a continuous phase transition from a quiescent to an active state, thereby exhibiting spontaneous and self-sustained localized activity as suggested by experiments. Analogously to the critical brain hypothesis, which states that neuronal networks self-organize near criticality to take advantage of its specific properties, here we propose that neurons with large dendritic arbors optimize their capacity to distinguish incoming stimuli at the critical state. We suggest that "computation at the edge of a phase transition" is more compatible with the view that dendritic arbors perform an analog rather than a digital dendritic computation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Rethinking Single Neuron Electrical Compartmentalization: Dendritic Contributions to Network Computation In Vivo
    Francioni, Valerio
    Harnett, Mark T.
    NEUROSCIENCE, 2022, 489 : 185 - 199
  • [42] Single-neuron and genetic correlates of autistic behavior in macaque
    Yoshida, Kyoko
    Go, Yasuhiro
    Kushima, Itaru
    Toyoda, Atsushi
    Fujiyama, Asao
    Imai, Hiroo
    Saito, Nobuhito
    Iriki, Atsushi
    Ozaki, Norio
    Isoda, Masaki
    SCIENCE ADVANCES, 2016, 2 (09):
  • [43] Single-Neuron Correlates of Atypical Face Processing in Autism
    Rutishauser, Ueli
    Tudusciuc, Oana
    Wang, Shuo
    Mamelak, Adam N.
    Ross, Ian B.
    Adolphs, Ralph
    NEURON, 2013, 80 (04) : 887 - 899
  • [44] Dissection of Cortical Microcircuits by Single-Neuron Stimulation In Vivo
    Kwan, Alex C.
    Dan, Yang
    CURRENT BIOLOGY, 2012, 22 (16) : 1459 - 1467
  • [45] New Insights on Critical Transitions of Single-Neuron Dynamics
    He, H.
    Zhang, K.
    Yan, H.
    Wang, J.
    ACTA PHYSICA POLONICA A, 2024, 146 (01) : 102 - 120
  • [46] Human single-neuron responses at the threshold of conscious recognition
    Quiroga, R. Quian
    Mukamel, R.
    Isham, E. A.
    Malach, R.
    Fried, I.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (09) : 3599 - 3604
  • [47] QLCA and Entangled States as Single-Neuron Activity Generators
    Roth, Yehuda
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [48] Single-Neuron Correlates of Awareness during Attentional Blinks
    Fu, Zhongzheng
    Rutishauser, Ueli
    TRENDS IN COGNITIVE SCIENCES, 2018, 22 (01) : 5 - 7
  • [49] Recording single-neuron activity during walking in humans
    Nature Neuroscience, 2023, 26 : 377 - 378
  • [50] Exploring human epileptic activity at the single-neuron level
    Tankus, Ariel
    EPILEPSY & BEHAVIOR, 2016, 58 : 11 - 17