Single-neuron criticality optimizes analog dendritic computation

被引:30
|
作者
Gollo, Leonardo L. [1 ,2 ]
Kinouchi, Osame [3 ,4 ]
Copelli, Mauro [4 ,5 ]
机构
[1] Inst Fis Interdisciplinar & Sistemas Complejos C, IFISC, E-07122 Palma de Mallorca, Spain
[2] Queensland Inst Med Res, Syst Neurosci Grp, Brisbane, Qld 4006, Australia
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeiraa Preto, BR-14040901 Ribeirao Preto, SP, Brazil
[4] Univ Fed Pernambuco, Ctr Nat & Artificial Informat Proc Syst USP, BR-50670901 Recife, PE, Brazil
[5] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
RANGE TEMPORAL CORRELATIONS; CORTICAL NETWORKS; DYNAMIC-RANGE; AVALANCHES; COMPLEX; POTENTIALS; ACTIVATION; MECHANISMS; PATTERNS; SPIKE;
D O I
10.1038/srep03222
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active dendritic branchlets enable the propagation of dendritic spikes, whose computational functions remain an open question. Here we propose a concrete function to the active channels in large dendritic trees. Modelling the input-output response of large active dendritic arbors subjected to complex spatio-temporal inputs and exhibiting non-stereotyped dendritic spikes, we find that the dendritic arbor can undergo a continuous phase transition from a quiescent to an active state, thereby exhibiting spontaneous and self-sustained localized activity as suggested by experiments. Analogously to the critical brain hypothesis, which states that neuronal networks self-organize near criticality to take advantage of its specific properties, here we propose that neurons with large dendritic arbors optimize their capacity to distinguish incoming stimuli at the critical state. We suggest that "computation at the edge of a phase transition" is more compatible with the view that dendritic arbors perform an analog rather than a digital dendritic computation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A human single-neuron dataset for object recognition
    Cao, Runnan
    Brunner, Peter
    Brandmeir, Nicholas J.
    Willie, Jon T.
    Wang, Shuo
    SCIENTIFIC DATA, 2025, 12 (01)
  • [32] Point process models of single-neuron discharges
    Johnson, DH
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1996, 3 (04) : 275 - 299
  • [33] Single-neuron dynamical effects of dendritic pruning implicated in aging and neurodegeneration: towards a measure of neuronal reserve
    Christoph Kirch
    Leonardo L. Gollo
    Scientific Reports, 11
  • [34] Dendritic Computation in a Point Neuron Model
    Vandesompele, Alexander
    Wyffels, Francis
    Dambre, Joni
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 599 - 609
  • [35] Developmental Changes in Dendritic Shape and Synapse Location Tune Single-Neuron Computations to Changing Behavioral Functions
    Meseke, Maurice
    Evers, Jan Felix
    Duch, Carsten
    JOURNAL OF NEUROPHYSIOLOGY, 2009, 102 (01) : 41 - 58
  • [36] Single-neuron dynamical effects of dendritic pruning implicated in aging and neurodegeneration: towards a measure of neuronal reserve
    Kirch, Christoph
    Gollo, Leonardo L.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [37] Computation and the single neuron
    Christof Koch
    Nature, 1997, 385 : 207 - 210
  • [38] Computation and the single neuron
    Koch, C
    NATURE, 1997, 385 (6613) : 207 - 210
  • [39] Rethinking Single Neuron Electrical Compartmentalization: Dendritic Contributions to Network Computation In Vivo
    Francioni, Valerio
    Harnett, Mark T.
    NEUROSCIENCE, 2022, 489 : 185 - 199
  • [40] Single Dendritic Neuron with Nonlinear Computation Capacity: A Case Study on XOR Problem
    Jiang, Tao
    Wang, Dizhou
    Ji, Junkai
    Todo, Yuki
    Gao, Shangce
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 20 - 24