Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence

被引:6
|
作者
Zhang, Biling [1 ]
Xu, Yonggen [1 ]
Wang, Xiaoyan [1 ]
Dan, Youquan [2 ,3 ]
机构
[1] Xihua Univ, Sch Sci, Dept Phys, Chengdu 610039, Sichuan, Peoples R China
[2] Civil Aviat Flight Univ China, Dept Phys, Guanghan 618307, Sichuan, Peoples R China
[3] Civil Aviat Flight Univ China, Atmospher Lidar Inst, Guanghan 618307, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTIALLY COHERENT BEAMS; DARK HOLLOW; M-2-FACTOR; MATRIX;
D O I
10.1364/OSAC.2.000162
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The propagation formulae for the propagation factor (known as M-2-factor) and beam wander of electromagnetic Gaussian Schell-model (EGSM) array beams in non-Kolmogorov turbulence are derived by using the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. The results indicate that the M-2-factor and beam wander depend on the beam parameters and turbulence parameters, and the relative M-2-factor has a maximum when the generalized exponent parameter a is equal to 3.1. Otherwise, the changes of the separation distances (x(0), y(0)) have great influence on the relative M-2-factor. The relative beam wander increases rapidly when 3<alpha<3.2; however, it increases slowly when 3.2<alpha<4. It is also shown that the beam spreading of EGSM array beams is more affected by turbulence than the root mean square beam wander. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:162 / 174
页数:13
相关论文
共 50 条
  • [41] Scintillation index of electromagnetic Gaussian Schell-model beams on propagation through atmospheric turbulence
    Lu, Wei
    Liu, Liren
    Liu, De'an
    Sun, Jianfeng
    FREE-SPACE LASER COMMUNICATIONS VII, 2007, 6709
  • [42] Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence
    Wu, Guohua
    Guo, Hong
    Yu, Song
    Luo, Bin
    OPTICS LETTERS, 2010, 35 (05) : 715 - 717
  • [43] Turbulence distance of radial Gaussian Schell-model array beams
    X. Li
    X. Ji
    H. T. Eyyuboğlu
    Y. Baykal
    Applied Physics B, 2010, 98 : 557 - 565
  • [44] Turbulence distance of radial Gaussian Schell-model array beams
    Li, X.
    Ji, X.
    Eyyuboglu, H. T.
    Baykal, Y.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 98 (2-3): : 557 - 565
  • [45] Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere
    Luo, Meilan
    Zhao, Daomu
    OPTICS COMMUNICATIONS, 2015, 336 : 98 - 102
  • [46] Beam propagation factor of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence
    Wu, Guohua
    Zhao, Tonggang
    Ren, Jianhua
    Zhang, Junyi
    Zhang, Xiaolei
    Li, Weihai
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (07): : 1225 - 1228
  • [47] Statistical properties of electromagnetic twisted Gaussian Schell-model array beams during propagation
    Zhou, Yujie
    Zhao, Daomu
    OPTICS EXPRESS, 2019, 27 (14): : 19624 - 19632
  • [48] Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams
    Lu Lu
    Ji Xiao-Ling
    Deng Jin-Ping
    Ma Yuan
    ACTA PHYSICA SINICA, 2014, 63 (01)
  • [49] Beam Wander of Multi-Gaussian Schell-model Hermite-Gaussian Beam in Atmospheric Turbulence
    Feng, Jixiang
    Yuan, Yangsheng
    Zhou, Zhengxian
    Qu, Jun
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 311 - 316
  • [50] Beam quality of radial Gaussian Schell-model array beams
    Li, Xiaoqing
    Ji, Xiaoling
    Yang, Fan
    OPTICS AND LASER TECHNOLOGY, 2010, 42 (04): : 604 - 609