Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence

被引:6
|
作者
Zhang, Biling [1 ]
Xu, Yonggen [1 ]
Wang, Xiaoyan [1 ]
Dan, Youquan [2 ,3 ]
机构
[1] Xihua Univ, Sch Sci, Dept Phys, Chengdu 610039, Sichuan, Peoples R China
[2] Civil Aviat Flight Univ China, Dept Phys, Guanghan 618307, Sichuan, Peoples R China
[3] Civil Aviat Flight Univ China, Atmospher Lidar Inst, Guanghan 618307, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTIALLY COHERENT BEAMS; DARK HOLLOW; M-2-FACTOR; MATRIX;
D O I
10.1364/OSAC.2.000162
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The propagation formulae for the propagation factor (known as M-2-factor) and beam wander of electromagnetic Gaussian Schell-model (EGSM) array beams in non-Kolmogorov turbulence are derived by using the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. The results indicate that the M-2-factor and beam wander depend on the beam parameters and turbulence parameters, and the relative M-2-factor has a maximum when the generalized exponent parameter a is equal to 3.1. Otherwise, the changes of the separation distances (x(0), y(0)) have great influence on the relative M-2-factor. The relative beam wander increases rapidly when 3<alpha<3.2; however, it increases slowly when 3.2<alpha<4. It is also shown that the beam spreading of EGSM array beams is more affected by turbulence than the root mean square beam wander. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:162 / 174
页数:13
相关论文
共 50 条
  • [21] Effect of anisotropic non-Kolmogorov turbulence on the evolution behavior of Gaussian Schell-model vortex beams
    Huang, Yongping
    Zeng, Anping
    OPTICS COMMUNICATIONS, 2019, 436 : 63 - 68
  • [22] Change in the state of polarization of Gaussian Schell-model beam propagating through non-Kolmogorov turbulence
    Zhang, Li
    Xu, Zhiyong
    Pu, Tao
    Zhang, Han
    Wang, Jingyuan
    Shen, Yuehong
    RESULTS IN PHYSICS, 2017, 7 : 4332 - 4336
  • [23] Average spreading of a linear Gaussian–Schell model beam array in non-Kolmogorov turbulence
    H. Tang
    B. Ou
    Applied Physics B, 2011, 104 : 1007 - 1012
  • [24] Cross-polarization properties of two Gaussian Schell-model beams through non-Kolmogorov turbulence
    Wang, Yuanguang
    Si, Congfang
    Zhang, Yixin
    Wang, Jianyu
    Jia, Jianjun
    OPTICS AND LASERS IN ENGINEERING, 2011, 49 (08) : 1060 - 1064
  • [25] Average polarizability of quantization Bessel-Gaussian Schell-model beams in anisotropic non-Kolmogorov turbulence
    Li, Ye
    Zhang, Yixin
    FOURTH SEMINAR ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2018, 10697
  • [26] Polarization fluctuations of Gaussian Schell-model type photon beams in a slant channel with non-Kolmogorov turbulence
    Zhang, Yixin
    Wang, Yuanguang
    Wang, Jianyu
    Jia, Jianjun
    OPTIK, 2012, 123 (17): : 1511 - 1514
  • [27] Beam wander of partially coherent array beams through non-Kolmogorov turbulence
    Huang, Yongping
    Zeng, Anping
    Gao, Zenghui
    Zhang, Bin
    OPTICS LETTERS, 2015, 40 (08) : 1619 - 1622
  • [28] Average spreading of a linear Gaussian-Schell model beam array in non-Kolmogorov turbulence
    Tang, H.
    Ou, B.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (04): : 1007 - 1012
  • [29] Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence
    Yu, Jiayi
    Chen, Yahong
    Liu, Lin
    Liu, Xianlong
    Cai, Yangjian
    OPTICS EXPRESS, 2015, 23 (10): : 13467 - 13481
  • [30] Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam
    Zhu, Shijun
    Cai, Yangjian
    Korotkova, Olga
    OPTICS EXPRESS, 2010, 18 (12): : 12587 - 12598