Propagation factor and beam wander of electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence

被引:6
|
作者
Zhang, Biling [1 ]
Xu, Yonggen [1 ]
Wang, Xiaoyan [1 ]
Dan, Youquan [2 ,3 ]
机构
[1] Xihua Univ, Sch Sci, Dept Phys, Chengdu 610039, Sichuan, Peoples R China
[2] Civil Aviat Flight Univ China, Dept Phys, Guanghan 618307, Sichuan, Peoples R China
[3] Civil Aviat Flight Univ China, Atmospher Lidar Inst, Guanghan 618307, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTIALLY COHERENT BEAMS; DARK HOLLOW; M-2-FACTOR; MATRIX;
D O I
10.1364/OSAC.2.000162
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The propagation formulae for the propagation factor (known as M-2-factor) and beam wander of electromagnetic Gaussian Schell-model (EGSM) array beams in non-Kolmogorov turbulence are derived by using the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. The results indicate that the M-2-factor and beam wander depend on the beam parameters and turbulence parameters, and the relative M-2-factor has a maximum when the generalized exponent parameter a is equal to 3.1. Otherwise, the changes of the separation distances (x(0), y(0)) have great influence on the relative M-2-factor. The relative beam wander increases rapidly when 3<alpha<3.2; however, it increases slowly when 3.2<alpha<4. It is also shown that the beam spreading of EGSM array beams is more affected by turbulence than the root mean square beam wander. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:162 / 174
页数:13
相关论文
共 50 条
  • [1] Propagation properties of Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Song, Zhenzhen
    Liu, Zhengjun
    Zhou, Keya
    Sun, Qiongge
    Liu, Shutian
    JOURNAL OF OPTICS, 2016, 18 (10)
  • [2] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
    Song, Zhen-Zhen
    Liu, Zheng-Jun
    Zhou, Ke-Ya
    Sun, Qiong-Ge
    Liu, Shu-Tian
    CHINESE PHYSICS B, 2017, 26 (02)
  • [3] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
    宋真真
    刘正君
    周可雅
    孙琼阁
    刘树田
    Chinese Physics B, 2017, 26 (02) : 210 - 216
  • [4] Spreading of radial stochastic electromagnetic Gaussian Schell-model array beams in non-Kolmogorov turbulence
    Lu Fang
    Zhao Dan
    Han Xiang'e
    AOPC 2015: OPTICAL AND OPTOELECTRONIC SENSING AND IMAGING TECHNOLOGY, 2015, 9674
  • [5] Beam propagation factor of radial Gaussian-Schell model beam array in non-Kolmogorov turbulence
    Tang, Hua
    Ou, Baolin
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (08): : 1442 - 1447
  • [6] Average Polarization of Electromagnetic Gaussian Schell-Model Beams through Anisotropic Non-Kolmogorov Turbulence
    Zhao, Yuanhang
    Zhang, Yixin
    Wang, Qiu
    RADIOENGINEERING, 2016, 25 (04) : 652 - 657
  • [7] Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence
    Xu, Hua-Feng
    Zhang, Zhou
    Qu, Jun
    Huang, Wei
    OPTICS EXPRESS, 2014, 22 (19): : 22479 - 22489
  • [8] Influence of turbulence on the beam propagation factor of Gaussian Schell-model array beams
    Ji, Xiaoling
    Shao, Xiaoli
    OPTICS COMMUNICATIONS, 2010, 283 (06) : 869 - 873
  • [9] Propagation of Radial Gaussian-Schell Model Beam Array in Non-Kolmogorov Turbulence
    Tang, Hua
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [10] Spectral Changes of a Radial Gaussian Schell-model Beam Array Propagating in non-Kolmogorov Turbulence
    Sharifi, Mehdi
    Luo, Bin
    Dang, Anhong
    Guo, Hong
    Wu, Guohua
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (10) : 1925 - 1931