On the weak convergence for solving semistrictly quasi-monotone variational inequality problems

被引:4
|
作者
Chang, S. S. [1 ]
Salahuddin [2 ]
Wang, L. [3 ]
Liu, M. [4 ]
机构
[1] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[2] Jazan Univ, Dept Math, Jazan, Saudi Arabia
[3] Yunnan Univ Finance & Econ, Kunming, Yunnan, Peoples R China
[4] Yibin Univ, Dept Math, Yibin, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational inequality problems; Extragradient method; Semistrict quasi-monotonicity; Weak convergence; EXTRAGRADIENT METHOD;
D O I
10.1186/s13660-019-2032-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the approximation problem of solutions for the semistrictly quasi-monotone variational inequalities in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the algorithm for solving the semistrictly quasi-monotone variational inequalities converges weakly to a solution.
引用
收藏
页数:11
相关论文
共 50 条