Weak and strong convergence results for solving monotone variational inequalities in reflexive Banach spaces

被引:1
|
作者
Yang, Jun [1 ]
Cholamjiak, Prasit [2 ]
Sunthrayuth, Pongsakorn [3 ]
机构
[1] Xianyang Normal Univ, Sch Math & Informat Sci, Xianyang, Peoples R China
[2] Univ Phayao, Sch Sci, Phayao, Thailand
[3] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Pathum Thani, Thailand
关键词
Legendre function; reflexive banach space; weak convergence; strong convergence; Bregman projection; PROJECTION ALGORITHM; POINTS;
D O I
10.1080/02331934.2022.2069568
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce two modified Tseng's extragradient algorithms with a new generalized adaptive stepsize for solving monotone variational inequalities (VI) in reflexive Banach spaces. The advantage of our methods is that stepsizes do not require prior knowledge of the Lipschitz constant of the cost mapping. Based on Bregman projection-type methods, we prove weak and strong convergence of the proposed algorithms to a solution of VI. Some numerical experiments to show the efficiency of our methods including a comparison with related methods are provided.
引用
收藏
页码:2609 / 2634
页数:26
相关论文
共 50 条
  • [1] STRONG CONVERGENCE ANALYSIS FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Owolabi A.O.E.
    Mewomo O.T.
    Yao J.C.
    Qin X.
    Journal of Nonlinear Functional Analysis, 2023, 2023 (01):
  • [2] STRONG CONVERGENCE ANALYSIS FOR SOLVING QUASI-MONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Owolabi, A. O. E.
    Mewomo, O. T.
    Yao, J. C.
    Qin, X.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2023, 2023
  • [3] WEAK AND STRONG CONVERGENCE RESULTS FOR SUM OF TWO MONOTONE OPERATORS IN REFLEXIVE BANACH SPACES
    Ogbuisi, Ferdinard U.
    Jolaoso, Lateef O.
    Shehu, Yekini
    FIXED POINT THEORY, 2020, 21 (01): : 281 - 304
  • [4] Strong Convergence Theorem of Bregman Algorithm for Solving Variational Inequalities in Banach Spaces
    Inkrong, Papatsara
    Cholamjiak, Prasit
    Wattanawitoon, Kriengsak
    Witthayarat, Uamporn
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (02): : 397 - 409
  • [5] VARIATIONAL INEQUALITIES FOR PERTURBATIONS OF MAXIMAL MONOTONE OPERATORS IN REFLEXIVE BANACH SPACES
    Asfaw, Teffera M.
    Kartsatos, Athanassios G.
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (02) : 171 - 203
  • [6] Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces
    Zhongbing Xie
    Gang Cai
    Qiao-Li Dong
    Numerical Algorithms, 2023, 93 : 269 - 294
  • [7] Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces
    Xie, Zhongbing
    Cai, Gang
    Dong, Qiao-Li
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 269 - 294
  • [8] Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces
    Liu, Ying
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 395 - 409
  • [9] ITERATIVE METHODS FOR SOLVING SYSTEMS OF VARIATIONAL INEQUALITIES IN REFLEXIVE BANACH SPACES
    Kassay, Gabor
    Reich, Simeon
    Sabach, Shoham
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) : 1319 - 1344
  • [10] A subgradient extragradient algorithm for solving monotone variational inequalities in Banach spaces
    Ma, Fei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)