Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries

被引:73
|
作者
Parekh, Mihit H. [1 ]
Parikh, Vihang P. [1 ]
Kim, Patrick J. [1 ]
Misra, Shikhar [2 ]
Qi, Zhimin [2 ]
Wang, Haiyan [2 ]
Pol, Vilas G. [1 ]
机构
[1] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
Silicon nanoparticles; Graphite; Wheat flour; High capacity; Li-ion batteries; Volume expansion; Composites; ELECTROCHEMICAL CHARACTERISTICS; ELECTRODE MATERIALS; ANODE MATERIALS; NANOFIBERS; LITHIATION; PROSPECTS;
D O I
10.1016/j.carbon.2019.03.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Considering the limited theoretical capacity of graphite (372 mAh g(-1)), graphite-Si (G-Si) composites have shown promise as high capacity anode for lithium-ion batteries during last few years. However, electrochemical reactions associated with a significant volume change of Si during repetitive cycles cause fatal technical issues (e.g. particle fragmentation, excessive solid electrolyte interface formation, electrode pulverization, etc.) and thus impede the practical use of Si electrodes. In this study, we used a commercially available wheat flour as a carbon source to improve the electrical conductivity and effectively accommodate the volume expansion of the G-Si electrode. The designed graphite-siliconwheat carbon (GSiWh) composite architecture comprising 25 wt% Si nanoparticles delivered a high initial capacity of 804 mAh g(-1) with an initial coulombic efficiency of 74% and retained 595 mAh g(-1) specific capacity after 200 cycles. The high performance and stability are attributed to the enhanced structural stability and improved electrochemical kinetics enabled by full coverage of the amorphous carbon. The proposed strategy of introducing an amorphous carbon into G-Si composites minimizes the intrinsic issues of Si electrode providing alternative solution to advance the development of Si-based anode electrode. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [21] Inkjet-printed silicon as high performance anodes for Li-ion batteries
    Lawes, Stephen
    Sun, Qian
    Lushington, Andrew
    Xiao, Biwei
    Liu, Yulong
    Sun, Xueliang
    NANO ENERGY, 2017, 36 : 313 - 321
  • [22] Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
    Billaud J.
    Bouville F.
    Magrini T.
    Villevieille C.
    Studart A.R.
    Nature Energy, 1 (8)
  • [23] Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
    Billaud, Juliette
    Bouville, Florian
    Magrini, Tommaso
    Villevieille, Claire
    Studart, Andre R.
    NATURE ENERGY, 2016, 1
  • [24] Untreated Natural Graphite as a Graphene Source for High-Performance Li-Ion Batteries
    Simon, Maria
    Benitez, Almudena
    Caballero, Alvaro
    Morales, Julian
    Vargas, Oscar
    BATTERIES-BASEL, 2018, 4 (01):
  • [25] Advanced Li-Rich Cathode Collaborated with Graphite/Silicon Anode for High Performance Li-Ion Batteries in Half and Full Cells
    Huang, Yanling
    Hou, Xianhua
    Fan, Xiaoying
    Ma, Shaomeng
    Hu, Shejun
    Lam, Kwok-ho
    ELECTROCHIMICA ACTA, 2015, 182 : 1175 - 1187
  • [26] Silicon/carbon composites as anode materials for Li-ion batteries
    Liu, Y
    Hanai, K
    Yang, J
    Imanishi, N
    Hirano, A
    Takeda, Y
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (10) : A369 - A372
  • [27] Partially amorphous vanadium oxysulfide for achieving high-performance Li-ion batteries
    Shen, Ao
    Shi, Zhichen
    Zhao, Chunyan
    Zhang, Wenyuan
    Feng, Yongbao
    Gong, Wenbin
    Liu, Chenglong
    Xue, Pan
    Xu, Peng
    Li, Qiulong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 685 : 615 - 625
  • [28] Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries
    Jabbour, Lara
    Destro, Matteo
    Chaussy, Didier
    Gerbaldi, Claudio
    Bodoardo, Silvia
    Penazzi, Nerino
    Beneventi, Davide
    COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 87 : 232 - 239
  • [29] Modification with graphite and sulfurized amorphous carbon for high-performance silicon anodes in lithium-ion batteries
    Li, Ling
    Qin, Rongrong
    Zhan, Ruoning
    Tu, Chenggang
    Liu, Xuanli
    Liu, Leibin
    Deng, Lingfeng
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [30] A high-performance hard carbon for Li-ion batteries and supercapacitors application
    Ni, Jiangfeng
    Huang, Youyuan
    Gao, Lijun
    JOURNAL OF POWER SOURCES, 2013, 223 : 306 - 311