Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries

被引:73
|
作者
Parekh, Mihit H. [1 ]
Parikh, Vihang P. [1 ]
Kim, Patrick J. [1 ]
Misra, Shikhar [2 ]
Qi, Zhimin [2 ]
Wang, Haiyan [2 ]
Pol, Vilas G. [1 ]
机构
[1] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
Silicon nanoparticles; Graphite; Wheat flour; High capacity; Li-ion batteries; Volume expansion; Composites; ELECTROCHEMICAL CHARACTERISTICS; ELECTRODE MATERIALS; ANODE MATERIALS; NANOFIBERS; LITHIATION; PROSPECTS;
D O I
10.1016/j.carbon.2019.03.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Considering the limited theoretical capacity of graphite (372 mAh g(-1)), graphite-Si (G-Si) composites have shown promise as high capacity anode for lithium-ion batteries during last few years. However, electrochemical reactions associated with a significant volume change of Si during repetitive cycles cause fatal technical issues (e.g. particle fragmentation, excessive solid electrolyte interface formation, electrode pulverization, etc.) and thus impede the practical use of Si electrodes. In this study, we used a commercially available wheat flour as a carbon source to improve the electrical conductivity and effectively accommodate the volume expansion of the G-Si electrode. The designed graphite-siliconwheat carbon (GSiWh) composite architecture comprising 25 wt% Si nanoparticles delivered a high initial capacity of 804 mAh g(-1) with an initial coulombic efficiency of 74% and retained 595 mAh g(-1) specific capacity after 200 cycles. The high performance and stability are attributed to the enhanced structural stability and improved electrochemical kinetics enabled by full coverage of the amorphous carbon. The proposed strategy of introducing an amorphous carbon into G-Si composites minimizes the intrinsic issues of Si electrode providing alternative solution to advance the development of Si-based anode electrode. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [11] Amorphous silicon as a possible anode material for Li-ion batteries
    Bourderau, S
    Brousse, T
    Schleich, DM
    JOURNAL OF POWER SOURCES, 1999, 81 : 233 - 236
  • [12] Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries
    Wei, Yaqing
    Liu, Xuhao
    Yao, Runzhe
    Qian, Jiayao
    Yin, Yiyi
    Li, De
    Chen, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [13] Synthesis of porous microspheres composed of graphitized carbon@amorphous silicon/carbon layers as high performance anode materials for Li-ion batteries
    Zhang, Zailei
    Wang, Yanhong
    Ren, Wenfeng
    Zhong, Ziyi
    Su, Fabing
    RSC ADVANCES, 2014, 4 (98) : 55010 - 55015
  • [14] Graphite from Dead Li-Ion Batteries: A "Powerful" Additive for Fabrication of High-Performance Li-Ion Capacitors
    Jyothilakshmi, Shaji
    Meshram, Pratima
    Abhilash
    Lee, Yun-Sung
    Aravindan, Vanchiappan
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (07)
  • [15] High-performance silicon/graphite anode prepared by CVD using SiCl4 as precursor for Li-ion batteries
    Hu, Mengfei
    Wu, Houzheng
    Zhang, Guo-Jun
    CHEMICAL PHYSICS LETTERS, 2023, 833
  • [16] Study of Electrochemical Performance of Amorphous Carbon-coated Graphite for Li-Ion Battery
    Rohman, Fadli
    Azizah, Umi
    Prihandoko, Bambang
    INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE) 2017, 2017, 1823
  • [17] Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries
    Fu, Yongzhu
    Manthiram, Arumugam
    NANO ENERGY, 2013, 2 (06) : 1107 - 1112
  • [18] Evaluating the efficacy of strategies for silicon/graphite anodes in Li-ion batteries
    Kim, Seokjin
    Jayasubramaniyan, S.
    Kim, Yujin
    Ko, Minseok
    Kim, Jueun
    Kim, Donghwi
    Sung, Jaekyung
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [19] Properties of silicon/graphite/carbon anode for Li-ion battery
    Wang, Hong-Yu
    Yin, Ge-Ping
    Xu, Yu-Hong
    Zuo, Peng-Jian
    Cheng, Xin-Qun
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2010, 42 (12): : 1916 - 1920
  • [20] Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries
    Jeong, Sookyung
    Li, Xiaolin
    Zheng, Jianming
    Yan, Pengfei
    Cao, Ruiguo
    Jung, Hee Joon
    Wang, Chongmin
    Liu, Jun
    Zhang, Ji-Guang
    JOURNAL OF POWER SOURCES, 2016, 329 : 323 - 329