The numerical simulation of improving parameter estimation by instrumental variable method

被引:1
|
作者
Wang, Yinao [1 ]
Ruan, Aiqing [2 ]
Zhan, Zhihui [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou City, Peoples R China
[2] Wenzhou Univ, City Coll, Wenzhou City, Peoples R China
关键词
Stochastic explanatory variables; Monte Carlo methods; Instrumental variable method; Linear regression model; Numerical simulation; Monte Carlo simulation; Regression analysis;
D O I
10.1108/03684921211257838
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Purpose - This paper aims to study the improved effect of the instrumental variable method to estimate parameters of linear regression model with the stochastic explanatory variables problem. Design/methodology/approach - By Monte-Carlo method, taking a linear regression model with intercept of 3, slope of 4 as an example, whose random error in standard normal distribution, to test whether parameter estimators are biased and how about the average relative error of estimator of slope when random explanatory variables are in different contemporaneously correlated with random error item. By the instrumental variables which are independent with random error item and in varying degrees related to random explanatory variable, the study tests the estimation accuracy of the slope using the instrumental variable method. Findings - This paper tests that the ordinary least square parameter estimators are biased, and especially that the average relative error of estimator of slope is significantly large, more than 10 percent, when random explanatory variables are different and contemporaneously correlated with the random error item. For the instrumental variables that are independent from random error item and in varying degrees related to the random explanatory variable, the estimation accuracy of the slope is significantly improved and the relative error dropped to less than 4 percent, but the estimation accuracy of the intercept term showed no significant improvement by the instrumental variable method. Practical implications - The method exposed in the paper shows how to improve estimation by an instrumental variable method. Originality/value - The paper succeeds in showing how to improve estimation by the instrumental variable method of numerical simulation.
引用
收藏
页码:985 / 993
页数:9
相关论文
共 50 条
  • [41] Instrumental variable estimation of a nonlinear Taylor rule
    Koustas, Zisimos
    Lamarche, Jean-Francois
    EMPIRICAL ECONOMICS, 2012, 42 (01) : 1 - 20
  • [42] INSTRUMENTAL VARIABLE METHODS FOR ARMA SPECTRAL ESTIMATION
    FRIEDLANDER, B
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1983, 31 (02): : 404 - 415
  • [43] ADAPTIVE INSTRUMENTAL VARIABLE METHODS FOR FREQUENCY ESTIMATION
    KANGAS, A
    STOICA, P
    SODERSTROM, T
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1992, 6 (05) : 441 - 469
  • [44] Instrumental variable estimation of a nonlinear Taylor rule
    Zisimos Koustas
    Jean-François Lamarche
    Empirical Economics, 2012, 42 : 1 - 20
  • [45] OPTIMAL INSTRUMENTAL VARIABLE ESTIMATION AND APPROXIMATE IMPLEMENTATIONS
    STOICA, P
    SODERSTROM, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (07) : 757 - 772
  • [46] Semiparametric modeling and estimation of instrumental variable models
    Crib, Siddhartha
    Greenberg, Edward
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (01) : 86 - 114
  • [47] Instrumental Variable Estimation with a Stochastic Monotonicity Assumption
    Small, Dylan S.
    Tan, Zhiqiang
    Ramsahai, Roland R.
    Lorch, Scott A.
    Brookhart, M. Alan
    STATISTICAL SCIENCE, 2017, 32 (04) : 561 - 579
  • [48] Application of the representer method for parameter estimation in numerical reservoir models
    Justyna K. Przybysz-Jarnut
    Remus G. Hanea
    Jan-Dirk Jansen
    Arnold W. Heemink
    Computational Geosciences, 2007, 11 : 73 - 85
  • [49] Instrumental variable estimation with heteroskedasticity and many instruments
    Hausman, Jerry A.
    Newey, Whitney K.
    Woutersen, Tiemen
    Chao, John C.
    Swanson, Norman R.
    QUANTITATIVE ECONOMICS, 2012, 3 (02) : 211 - 255
  • [50] Instrumental variable estimation in functional linear models
    Florens, Jean-Pierre
    Van Bellegem, Sebastien
    JOURNAL OF ECONOMETRICS, 2015, 186 (02) : 465 - 476