The numerical simulation of improving parameter estimation by instrumental variable method

被引:1
|
作者
Wang, Yinao [1 ]
Ruan, Aiqing [2 ]
Zhan, Zhihui [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou City, Peoples R China
[2] Wenzhou Univ, City Coll, Wenzhou City, Peoples R China
关键词
Stochastic explanatory variables; Monte Carlo methods; Instrumental variable method; Linear regression model; Numerical simulation; Monte Carlo simulation; Regression analysis;
D O I
10.1108/03684921211257838
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Purpose - This paper aims to study the improved effect of the instrumental variable method to estimate parameters of linear regression model with the stochastic explanatory variables problem. Design/methodology/approach - By Monte-Carlo method, taking a linear regression model with intercept of 3, slope of 4 as an example, whose random error in standard normal distribution, to test whether parameter estimators are biased and how about the average relative error of estimator of slope when random explanatory variables are in different contemporaneously correlated with random error item. By the instrumental variables which are independent with random error item and in varying degrees related to random explanatory variable, the study tests the estimation accuracy of the slope using the instrumental variable method. Findings - This paper tests that the ordinary least square parameter estimators are biased, and especially that the average relative error of estimator of slope is significantly large, more than 10 percent, when random explanatory variables are different and contemporaneously correlated with the random error item. For the instrumental variables that are independent from random error item and in varying degrees related to the random explanatory variable, the estimation accuracy of the slope is significantly improved and the relative error dropped to less than 4 percent, but the estimation accuracy of the intercept term showed no significant improvement by the instrumental variable method. Practical implications - The method exposed in the paper shows how to improve estimation by an instrumental variable method. Originality/value - The paper succeeds in showing how to improve estimation by the instrumental variable method of numerical simulation.
引用
收藏
页码:985 / 993
页数:9
相关论文
共 50 条
  • [21] Instrumental variable estimation for compositional treatments
    Ailer, Elisabeth
    Mueller, Christian L.
    Kilbertus, Niki
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] Nonlinear instrumental variable estimation of an autoregression
    Phillips, PCB
    Park, JY
    Chang, Y
    JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) : 219 - 246
  • [23] Instrumental variable estimation of a threshold model
    Caner, M
    Hansen, BE
    ECONOMETRIC THEORY, 2004, 20 (05) : 813 - 843
  • [24] Nonparametric instrumental variable derivative estimation
    Florens, J. P.
    Racine, J. S.
    Centorrino, S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (02) : 368 - 391
  • [25] Jackknife instrumental variable estimation with heteroskedasticity
    Bekker, Paul A.
    Crudu, Federico
    JOURNAL OF ECONOMETRICS, 2015, 185 (02) : 332 - 342
  • [26] Nonparametric instrumental-variable estimation
    Chetverikov, Denis
    Kim, Dongwoo
    Wilhelm, Daniel
    STATA JOURNAL, 2018, 18 (04): : 937 - 950
  • [27] Instrumental variable estimation of reinforcer effects
    Jensen, Greg
    JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR, 2019, 111 (02) : 359 - 368
  • [28] Instrumental Variable Estimation in a Survival Context
    Tchetgen, Eric J. Tchetgen
    Walter, Stefan
    Vansteelandt, Stijn
    Martinussen, Torben
    Glymour, Maria
    EPIDEMIOLOGY, 2015, 26 (03) : 402 - 410
  • [29] Instrumental variable estimation of nonparametric models
    Newey, WK
    Powell, JL
    ECONOMETRICA, 2003, 71 (05) : 1565 - 1578
  • [30] Instrumental variable estimation of nonseparable models
    Chernozhukov, Victor
    Imbens, Guido W.
    Newey, Whitney K.
    JOURNAL OF ECONOMETRICS, 2007, 139 (01) : 4 - 14