The numerical simulation of improving parameter estimation by instrumental variable method

被引:1
|
作者
Wang, Yinao [1 ]
Ruan, Aiqing [2 ]
Zhan, Zhihui [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou City, Peoples R China
[2] Wenzhou Univ, City Coll, Wenzhou City, Peoples R China
关键词
Stochastic explanatory variables; Monte Carlo methods; Instrumental variable method; Linear regression model; Numerical simulation; Monte Carlo simulation; Regression analysis;
D O I
10.1108/03684921211257838
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Purpose - This paper aims to study the improved effect of the instrumental variable method to estimate parameters of linear regression model with the stochastic explanatory variables problem. Design/methodology/approach - By Monte-Carlo method, taking a linear regression model with intercept of 3, slope of 4 as an example, whose random error in standard normal distribution, to test whether parameter estimators are biased and how about the average relative error of estimator of slope when random explanatory variables are in different contemporaneously correlated with random error item. By the instrumental variables which are independent with random error item and in varying degrees related to random explanatory variable, the study tests the estimation accuracy of the slope using the instrumental variable method. Findings - This paper tests that the ordinary least square parameter estimators are biased, and especially that the average relative error of estimator of slope is significantly large, more than 10 percent, when random explanatory variables are different and contemporaneously correlated with the random error item. For the instrumental variables that are independent from random error item and in varying degrees related to the random explanatory variable, the estimation accuracy of the slope is significantly improved and the relative error dropped to less than 4 percent, but the estimation accuracy of the intercept term showed no significant improvement by the instrumental variable method. Practical implications - The method exposed in the paper shows how to improve estimation by an instrumental variable method. Originality/value - The paper succeeds in showing how to improve estimation by the instrumental variable method of numerical simulation.
引用
收藏
页码:985 / 993
页数:9
相关论文
共 50 条
  • [1] AN INSTRUMENTAL VARIABLE METHOD FOR ROBOT IDENTIFICATION BASED ON TIME VARIABLE PARAMETER ESTIMATION
    Brunot, Mathieu
    Janot, Alexandre
    Young, Peter C.
    Carrillo, Francisco
    KYBERNETIKA, 2018, 54 (01) : 202 - 220
  • [3] AN OPTIMAL INSTRUMENTAL VARIABLE METHOD FOR ARMA SPECTRAL ESTIMATION
    ZOU, PG
    DU, LS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (12) : 2728 - 2733
  • [4] Motor Frequency Estimation by using Instrumental Variable method
    Kim, Yong Hwi
    Choi, Ka Hyung
    Yoon, Tae Sung
    Parkh, Jin Bae
    2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 1274 - 1276
  • [5] Variable residue method for modal parameter estimation
    Lin, RM
    Lim, MK
    Liew, KM
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 392 - 397
  • [6] Instrumental variable-based parameter estimation for nonlinear systems with scarce measurements
    Xia, Huafeng
    Yin, Weixia
    Miao, Xinghua
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5202 - 5207
  • [7] A double instrumental variable method for geophysical product error estimation
    Dong, Jianzhi
    Crow, Wade T.
    Duan, Zheng
    Wei, Lingna
    Lu, Yang
    REMOTE SENSING OF ENVIRONMENT, 2019, 225 : 217 - 228
  • [8] Industrial Robot Parameter Identification using a Constrained Instrumental Variable Method
    Fabio, Ardiani
    Janot, Alexandre
    Mourad, Benoussaad
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 6250 - 6255
  • [9] Instrumental variable covariance method for the aircraft flutter model parameter identification
    Wang, Jianhong
    Zhu Yong-hong
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3017 - 3022
  • [10] A Noniterative Estimation in Confirmatory Factor Analysis by an Instrumental Variable Method
    Hideki Toyoda
    Behaviormetrika, 1997, 24 (2) : 147 - 158