Tumour microenvironment-responsive semiconducting polymer-based self-assembling nanotheranostics

被引:0
|
作者
Yang, Zhen [1 ,2 ]
Dai, Yunlu [3 ]
Shan, Lingling [2 ]
Shen, Zheyu [2 ]
Wang, Zhantong [2 ]
Yung, Bryant C. [2 ]
Jacobson, Orit [2 ]
Liu, Yijing [2 ]
Tang, Wei [2 ]
Wang, Sheng [2 ]
Lin, Lisen [2 ]
Niu, Gang [2 ]
Huang, Pintong [1 ]
Chen, Xiaoyuan [2 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Ultrasound Med, 88 Jiefang Rd, Hangzhou 310009, Zhejiang, Peoples R China
[2] NIBIB, Lab Mol Imaging & Nanomed LOMIN, NIH, Bethesda, MD 20892 USA
[3] Univ Macau, Fac Hlth Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
CANCER; NANOPARTICLES; DESIGN; NANOMEDICINE; CHEMOTHERAPY; THERAPY;
D O I
10.1039/c8nh00307f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Pt prodrug polyphenol and gadolinium ion loaded cancer theranostics nanoplatform based on a mild acidic pH and thermal sensitive polymer was designed for photoacoustic (PA)/magnetic resonance (MR)/positron emission tomography (PET) multimodal imaging-guided chemo-photothermal combination therapy. The Pt drug release can be controlled by tumour-specific acidic pH and heat generated by external NIR irradiation. The nanoparticles were stable under normal physiological environments and released the drug under the acidic pH of tumours and NIR laser irradiation, which can reduce the side effects of the drug to normal organs. Moreover, the MR signal can be significantly enhanced (approximate to 3-fold increase in T-1 relaxivity) under the acidic tumour microenvironment, which is favorable for cancer diagnosis. The nanoparticles exhibited excellent tumour accumulation and led to complete tumour eradication with low power NIR laser irradiation. This promising approach provides a new avenue for imaging-guided combination therapy.
引用
收藏
页码:426 / 433
页数:8
相关论文
共 50 条
  • [41] Modeling the Tumor Microenvironment of Ovarian Cancer: The Application of Self-Assembling Biomaterials
    Mendoza-Martinez, Ana Karen
    Loessner, Daniela
    Mata, Alvaro
    Azevedo, Helena S.
    CANCERS, 2021, 13 (22)
  • [42] Self-Assembling Semiconducting Polymers-Rods and Gels from Electronic Materials
    Clark, Andrew P-Z.
    Shi, Chenjun
    Ng, Benny C.
    Wilking, James N.
    Ayzner, Alexander L.
    Stieg, Adam Z.
    Schwartz, Benjamin J.
    Mason, Thomas G.
    Rubin, Yves
    Tolbert, Sarah H.
    ACS NANO, 2013, 7 (02) : 962 - 977
  • [43] Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics
    Han, Ning
    Yang, Yi Yan
    Wang, Shu
    Zheng, Shusen
    Fan, Weimin
    CURRENT DRUG METABOLISM, 2013, 14 (06) : 661 - 674
  • [44] Synthesis of graft polyacrylamide with responsive self-assembling properties in aqueous media
    Petit, Laurence
    Karakasyan, Carole
    Pantoustier, Nadege
    Hourdet, Dominique
    POLYMER, 2007, 48 (24) : 7098 - 7112
  • [45] Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery
    Ji, Haofei
    Zhu, Qubo
    JOURNAL OF CONTROLLED RELEASE, 2023, 361 : 803 - 818
  • [46] A multi-stimuli responsive, self-assembling, boronic acid dipeptide
    Jones, Brad H.
    Martinez, Alina M.
    Wheeler, Jill S.
    McKenzie, Bonnie B.
    Miller, Lance L.
    Wheeler, David R.
    Spoerke, Erik D.
    CHEMICAL COMMUNICATIONS, 2015, 51 (77) : 14532 - 14535
  • [47] Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment
    Fan, Huanhuan
    Guo, Zijian
    COORDINATION CHEMISTRY REVIEWS, 2023, 480
  • [48] Flow Imaging Microscopy of a Self-Assembling Protein Polymer Material
    Balog, Eva Rose M.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 295A - 296A
  • [49] Self-assembling polymer-peptide conjugates: Nanostructural tailoring
    Collier, JH
    Messersmith, PB
    ADVANCED MATERIALS, 2004, 16 (11) : 907 - 910
  • [50] Self-Assembling Polymer–Nanodiamond Composite Coatings for Vacuum Cathodes
    Lebedev-Stepanov P.V.
    Dideykin A.T.
    Chvalun S.N.
    Vasiliev A.L.
    Grigoryev T.E.
    Korovin A.N.
    Belousov S.I.
    Molchanov S.P.
    Yurasik G.A.
    Vul’ A.Y.
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2018, 12 (1) : 135 - 138