Tumour microenvironment-responsive semiconducting polymer-based self-assembling nanotheranostics

被引:0
|
作者
Yang, Zhen [1 ,2 ]
Dai, Yunlu [3 ]
Shan, Lingling [2 ]
Shen, Zheyu [2 ]
Wang, Zhantong [2 ]
Yung, Bryant C. [2 ]
Jacobson, Orit [2 ]
Liu, Yijing [2 ]
Tang, Wei [2 ]
Wang, Sheng [2 ]
Lin, Lisen [2 ]
Niu, Gang [2 ]
Huang, Pintong [1 ]
Chen, Xiaoyuan [2 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Ultrasound Med, 88 Jiefang Rd, Hangzhou 310009, Zhejiang, Peoples R China
[2] NIBIB, Lab Mol Imaging & Nanomed LOMIN, NIH, Bethesda, MD 20892 USA
[3] Univ Macau, Fac Hlth Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
CANCER; NANOPARTICLES; DESIGN; NANOMEDICINE; CHEMOTHERAPY; THERAPY;
D O I
10.1039/c8nh00307f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Pt prodrug polyphenol and gadolinium ion loaded cancer theranostics nanoplatform based on a mild acidic pH and thermal sensitive polymer was designed for photoacoustic (PA)/magnetic resonance (MR)/positron emission tomography (PET) multimodal imaging-guided chemo-photothermal combination therapy. The Pt drug release can be controlled by tumour-specific acidic pH and heat generated by external NIR irradiation. The nanoparticles were stable under normal physiological environments and released the drug under the acidic pH of tumours and NIR laser irradiation, which can reduce the side effects of the drug to normal organs. Moreover, the MR signal can be significantly enhanced (approximate to 3-fold increase in T-1 relaxivity) under the acidic tumour microenvironment, which is favorable for cancer diagnosis. The nanoparticles exhibited excellent tumour accumulation and led to complete tumour eradication with low power NIR laser irradiation. This promising approach provides a new avenue for imaging-guided combination therapy.
引用
收藏
页码:426 / 433
页数:8
相关论文
共 50 条
  • [31] Self-assembling systems based on porphyrins
    Mamardashvili, G. M.
    Mamardashvili, N. Zh.
    Koifman, O. I.
    USPEKHI KHIMII, 2008, 77 (01) : 60 - 77
  • [32] Encapsulation of a self-assembling bicopper complex in polymer nanowires
    Poux, S
    Thierry, A
    Fazel, N
    Dahoun, A
    Guenet, JM
    MACROMOLECULAR SYMPOSIA, 2001, 168 : 67 - 73
  • [33] Polymer Self-Assembling of Light Converting Microlenses Arrays
    Coppola, S.
    Mandracchia, B.
    Nasti, G.
    Vespini, V.
    Pareo, P.
    Carbone, L.
    Manca, M.
    Gigli, G.
    Ferraro, P.
    MICRO-OPTICS 2014, 2014, 9130
  • [34] Design of Self-Assembling Protein-Polymer Conjugates
    Carter, Nathan A.
    Geng, Xi
    Grove, Tijana Z.
    PROTEIN-BASED ENGINEERED NANOSTRUCTURES, 2016, 940 : 179 - 214
  • [35] pH-Responsive Self-Assembling Peptide-Based Biomaterials: Designs and Applications
    Li, Zhao
    Zhu, Yumeng
    Matson, John B.
    ACS APPLIED BIO MATERIALS, 2022, 5 (10) : 4635 - 4651
  • [36] Self-Assembling Polymer Nanocomposites Based on Symmetric Diblock Copolymers: Mesoscopic Modeling
    P. V. Komarov
    M. D. Malyshev
    P. G. Khalatur
    A. R. Khokhlov
    Doklady Physical Chemistry, 2022, 504 : 84 - 88
  • [37] Self-Assembling Polymer Nanocomposites Based on Symmetric Diblock Copolymers: Mesoscopic Modeling
    Komarov, P. V.
    Malyshev, M. D.
    Khalatur, P. G.
    Khokhlov, A. R.
    DOKLADY PHYSICAL CHEMISTRY, 2022, 504 (02) : 84 - 88
  • [38] Design of cysteine-based self-assembling polymer drugs for anticancer chemotherapy
    Koda, Yuta
    Nagasaki, Yukio
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 220
  • [39] ELECTRORHEOLOGICAL PROPERTIES OF SEMICONDUCTING POLYMER-BASED SUSPENSIONS
    XU, YZ
    LIANG, RF
    JOURNAL OF RHEOLOGY, 1991, 35 (07) : 1355 - 1373
  • [40] Cancer-microenvironment triggered self-assembling therapy with molecular blocks
    Nakatsuji, Hirotaka
    Shioji, Yudai
    Hiraoka, Noboru
    Okada, Yuta
    Kato, Natsuko
    Shibata, Sayaka
    Aoki, Ichio
    Matsusaki, Michiya
    MATERIALS HORIZONS, 2021, 8 (04) : 1216 - 1221