The band gap of 1D viscoelastic phononic crystal

被引:71
|
作者
Zhao, Y. P. [1 ]
Wei, P. J. [1 ]
机构
[1] Univ Sci & Technol, Sch Appl Sci, Dept Math & Mech, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Phononic crystal; Band gap; Viscoelasticity; Plane wave; Standard solid model; COMPOSITES;
D O I
10.1016/j.commatsci.2009.03.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The band gap of one dimensional (1D) phononic crystal with viscoelastic host material is studied in this paper. The standard solid model is used to simulate the viscoelastic behavior of the host material and the fillers embedded in the host material are still assumed elastic material. The band gap problem in 1D phononic crystal leads to an eigenvalue problem by using the plane wave expansion method and the Bloch-Floquet wave theory in a periodic structure. An iterative algorithm is designed to obtain the band gap structure due to the dependence of elastic constants on frequency for the viscoelastic host material. A numerical example is given for steel/epoxy phononic crystal. The band gap of 1D phononic crystal is evaluated for different viscoelastic constants, namely, relaxation time, initial and final state elastic modulus. It is found that the viscoelastic constants of host material affect not only the location but also the width of band gaps. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:603 / 606
页数:4
相关论文
共 50 条
  • [41] Band gap structures for viscoelastic phononic crystals based on numerical and experimental investigation
    Zhu, Xingyi
    Zhong, Sheng
    Zhao, Hongduo
    APPLIED ACOUSTICS, 2016, 106 : 93 - 104
  • [42] Investigation of Band Gap Width in Ternary 1D Photonic Crystal with Left-Handed Layer
    Zare, Z.
    Gharaati, A.
    ACTA PHYSICA POLONICA A, 2014, 125 (01) : 36 - 38
  • [43] Slow sound mode prediction and band structure calculation in 1D phononic crystal nanobeams using an artificial neural network
    Hsiao, Fu-Li
    Yang, Yen-Tung
    Lin, Wen-Kai
    Tsai, Ying-Pin
    SCIENCE PROGRESS, 2024, 107 (03)
  • [44] Phononic topological states in 1D quasicrystals
    Silva, J. R. M.
    Vasconcelos, M. S.
    Anselmo, D. H. A. L.
    Mello, V. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (50)
  • [45] Band Gap in Phononic Crystal Thin Plate with/without Mirror Plane
    Hou, Zhilin
    Assouar, Badreddine M.
    IUTAM SYMPOSIUM ON RECENT ADVANCES OF ACOUSTIC WAVES IN SOLIDS, 2010, 26 : 325 - +
  • [46] Experimental and numerical study of evanescent waves in the mini stopband of a 1D phononic crystal
    Bavencoffe, Maxime
    Morvan, Bruno
    Hladky-Hennion, Anne-Christine
    Izbicki, Jean-Louis
    ULTRASONICS, 2013, 53 (02) : 313 - 319
  • [47] A one-dimensional optomechanical crystal with a complete phononic band gap
    Gomis-Bresco, J.
    Navarro-Urrios, D.
    Oudich, M.
    El-Jallal, S.
    Griol, A.
    Puerto, D.
    Chavez, E.
    Pennec, Y.
    Djafari-Rouhani, B.
    Alzina, F.
    Martinez, A.
    Sotomayor Torres, C. M.
    NATURE COMMUNICATIONS, 2014, 5
  • [48] Evidence for complete surface wave band gap in a piezoelectric phononic crystal
    Benchabane, S.
    Khelif, A.
    Rauch, J. -Y.
    Robert, L.
    Laude, V.
    PHYSICAL REVIEW E, 2006, 73 (06):
  • [49] Study on band gap characteristics of phononic crystal composed by different material
    Yan, Xin
    Bing, Pi-Bin
    Zhang, Xing-Fang
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2014, 43 (05): : 1306 - 1310
  • [50] Study on the factor parameters of the first complete band gap in phononic crystal
    Zhang, Ming
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2014, 43 (03): : 682 - 687