The band gap of 1D viscoelastic phononic crystal

被引:71
|
作者
Zhao, Y. P. [1 ]
Wei, P. J. [1 ]
机构
[1] Univ Sci & Technol, Sch Appl Sci, Dept Math & Mech, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Phononic crystal; Band gap; Viscoelasticity; Plane wave; Standard solid model; COMPOSITES;
D O I
10.1016/j.commatsci.2009.03.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The band gap of one dimensional (1D) phononic crystal with viscoelastic host material is studied in this paper. The standard solid model is used to simulate the viscoelastic behavior of the host material and the fillers embedded in the host material are still assumed elastic material. The band gap problem in 1D phononic crystal leads to an eigenvalue problem by using the plane wave expansion method and the Bloch-Floquet wave theory in a periodic structure. An iterative algorithm is designed to obtain the band gap structure due to the dependence of elastic constants on frequency for the viscoelastic host material. A numerical example is given for steel/epoxy phononic crystal. The band gap of 1D phononic crystal is evaluated for different viscoelastic constants, namely, relaxation time, initial and final state elastic modulus. It is found that the viscoelastic constants of host material affect not only the location but also the width of band gaps. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:603 / 606
页数:4
相关论文
共 50 条
  • [31] Ultra-sensitive acoustic biosensor based on a 1D phononic crystal
    Khateib, Fatma
    Mehaney, Ahmed
    Amin, Rafat M.
    Aly, Arafa H.
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [32] Band gap engineering in simultaneous phononic and photonic crystal slabs
    B. Djafari Rouhani
    Y. Pennec
    E. H. El Boudouti
    J. O. Vasseur
    Y. El Hassouani
    C. Li
    A. Akjouj
    D. Bria
    Applied Physics A, 2011, 103 : 735 - 739
  • [33] Band gap engineering in simultaneous phononic and photonic crystal slabs
    Rouhani, B. Djafari
    Pennec, Y.
    El Boudouti, E. H.
    Vasseur, J. O.
    El Hassouani, Y.
    Li, C.
    Akjouj, A.
    Bria, D.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (03): : 735 - 739
  • [34] Band structure computation of 1D photonic crystal
    Varshney, SK
    Singh, MP
    Sinha, RK
    PHOTONIC CRYSTAL MATERIALS AND DEVICES, 2003, 5000 : 89 - 94
  • [35] Total reflection through effect of elastic wave in a 1D phononic crystal
    Liu, Qi-Neng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31 (01): : 173 - 176
  • [36] Analytic method of studying defect mode of 1D doped phononic crystal
    Liu Qi-Neng
    ACTA PHYSICA SINICA, 2011, 60 (04)
  • [37] Band gap tunability of magneto-elastic phononic crystal
    Matar, O. Bou
    Robillard, J. F.
    Vasseur, J. O.
    Hladky-Hennion, A-C
    Deymier, P. A.
    Pernod, P.
    Preobrazhensky, V.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (05)
  • [38] Waveguiding inside the complete band gap of a phononic crystal slab
    Hsiao, Fu-Li
    Khelif, Abdelkrim
    Moubchir, Hanane
    Choujaa, Abdelkrim
    Chen, Chii-Chang
    Laude, Vincent
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [39] Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures
    Frazier, Michael J.
    Hussein, Mahmoud I.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2015, 138 (05): : 3169 - 3180
  • [40] Integral micromorphic model for band gap in 1D continuum
    Jirasek, Milan
    Horak, Martin
    Smejkal, Michal
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2024, 36 (05) : 1247 - 1266