RSDFT-NEGF Quantum Transport Simulation of Ultra-Small Field-Effect Transistors

被引:0
|
作者
Mori, Nobuya [1 ]
Mil'nikov, Gennady [1 ]
Iwata, Jun-ichi [2 ]
Oshiyama, Atsushi [3 ]
机构
[1] Osaka Univ, Suita, Osaka 5650871, Japan
[2] AdvanceSoft Corp, Chiyoda Ku, Tokyo 1010062, Japan
[3] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
Device Simulation; Quantum Transport; MOSFET; NEGF; RSDFT;
D O I
10.1109/edtm47692.2020.9117827
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe our recent progress in developing a non-equilibrium Green's function (NEGF) quantum transport simulator based on the real-space density functional theory (RSDFT). The simulator is implemented with the R-matrix theory and the low-dimensional equivalent model (EM), which substantially reduce the computational burden and make it possible to simulate the transport characteristics of realistic semiconductor devices from the first-principles. The simulator can incorporate non-equilibrium polarization charge effects by using the EM method to construct a piece-wise EM representation for a wide energy range of the RSDFT Hamiltonian. Numerical examples of transfer characteristics have shown for Si and Ge nanosheet field-effect transistors (FETs) and Si nanowire FETs.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Electronic spin transport in graphene field-effect transistors
    Popinciuc, M.
    Jozsa, C.
    Zomer, P. J.
    Tombros, N.
    Veligura, A.
    Jonkman, H. T.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [42] Ballistic transport properties in spin field-effect transistors
    Jiang, K.M.
    Yang, Jun
    Zhang, R.
    Wang, Hongyan
    1600, American Institute of Physics Inc. (104):
  • [43] Miniband transport in vertical superlattice field-effect transistors
    Deutschmann, RA
    Wegscheider, W
    Rother, M
    Bichler, M
    Abstreiter, G
    APPLIED PHYSICS LETTERS, 2001, 79 (10) : 1564 - 1566
  • [44] Dimensionality of charge transport in organic field-effect transistors
    Sharma, A.
    van Oost, F. W. A.
    Kemerink, M.
    Bobbert, P. A.
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [45] Topological field-effect quantum transistors in HgTe nanoribbons
    Fu, Hua-Hua
    Gao, Jin-Hua
    Yao, Kai-Lun
    NANOTECHNOLOGY, 2014, 25 (22)
  • [46] Semianalytical quantum model for graphene field-effect transistors
    20184806149859
    1600, American Institute of Physics Inc. (116):
  • [47] Semianalytical quantum model for graphene field-effect transistors
    Pugnaghi, Claudio
    Grassi, Roberto
    Gnudi, Antonio
    Di Lecce, Valerio
    Gnani, Elena
    Reggiani, Susanna
    Baccarani, Giorgio
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (11)
  • [48] Simulation Study on the Feasibility of Si as Material for Ultra-Scaled Nanowire Field-Effect Transistors
    Stanojevic, Z.
    Baumgartner, O.
    Karner, M.
    Mitterbauer, F.
    Demel, H.
    Kernstock, C.
    2016 JOINT INTERNATIONAL EUROSOI WORKSHOP AND INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION ON SILICON (EUROSOI-ULIS 2016), 2016, : 147 - 150
  • [49] Atomistic quantum transport simulation of multilayer phosphorene nanoribbon field effect transistors
    Sarvari, Hojjatollah
    Liu, Chaoyuan
    Ghayour, Amir Hossein
    Shenavar, Parham
    Chen, Zhi
    Ghayour, Rahim
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 91 : 161 - 168
  • [50] Efficient Atomistic Simulation of Heterostucture Field-Effect Transistors
    Ahn, Yongsoo
    Shin, Mincheol
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) : 668 - 676