Direct and Label-Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry

被引:42
|
作者
Gong, Lingyan [1 ]
Petchakup, Chayakorn [1 ]
Shi, Pujiang [2 ]
Tan, Pei Leng [2 ]
Tan, Lay Poh [2 ]
Tay, Chor Yong [2 ,3 ,4 ,5 ]
Hou, Han Wei [1 ,6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore
[4] Nanyang Environm & Water Res Inst, Environm Chem & Mat Ctr, CleanTech Loop,CleanTech One, Singapore 637141, Singapore
[5] Nanyang Technol Univ Singapore, Energy Res Inst, 50 Nanyang Dr, Singapore 637553, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, 11 Mandalay Rd, Singapore 308232, Singapore
[7] Singapore Massachusetts Inst Technol Alliance Res, Crit Analyt Mfg Personalized Med, 1 CREATE Way,10-01,CREATE Tower, Singapore 138602, Singapore
关键词
biomanufacturing; impedance cytometry; label‐ free; microfluidics; stem cell differentiation; MESENCHYMAL STEM-CELLS; FLOW-CYTOMETRY; SPECTROSCOPY; EXPANSION; MEMBRANE; CULTURE;
D O I
10.1002/smll.202007500
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D cellular spheroids/microcarriers (100 mu m-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|Z(LF)| (60 kHz), |Z(HF)| (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified. Using a closed-loop recirculation system, it is demonstrated that |Z(LF)| increases with breast cancer (MCF-7) spheroid biomass, while higher opacity (impedance ratio |Z(HF)|/|Z(LF)|) indicates cell death due to compromised cell membrane. Anti-cancer drug (paclitaxel)-treated spheroids also exhibit lower |Z(LF)| with increased cell dissociation. Interestingly, impedance characterization of adipose-derived mesenchymal stem cell differentiation on Cytodex microcarriers reveals that adipogenic cells (higher intracellular lipid content) exhibit higher impedance than osteogenic cells (more conductive due to calcium ions) for both microcarriers and single cell level. Taken together, the developed platform offers great versatility for multi-parametric analysis of spheroids/microcarriers at high throughput (approximate to 1 particle/s), and can be readily integrated into bioreactors for long-term and remote monitoring of biomass and cell quality.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Label-free cell detection of acute leukemia using ghost cytometry
    Kawamura, Yoko
    Nakanishi, Kayoko
    Murata, Yuri
    Teranishi, Kazuki
    Miyazaki, Ryusuke
    Toda, Keisuke
    Imai, Toru
    Kajiwara, Yasuhiro
    Nakagawa, Keiji
    Matsuo, Hidemasa
    Adachi, Souichi
    Ota, Sadao
    Hiramatsu, Hidefumi
    CYTOMETRY PART A, 2024, 105 (03) : 196 - 202
  • [22] OSMOTIC ERYTHROCYTE LYSIS FOR CHEMICAL- AND LABEL-FREE IMPEDANCE CYTOMETRY
    Winkler, T. E.
    Ben-Yoav, H.
    Kelly, D. L.
    Ghodssi, R.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 351 - 354
  • [23] LABEL-FREE SPECTROSCOPY FOR CELL MONITORING
    Yong, D.
    Rahim, A. Abdul
    Wei, B.
    Wu, Y.
    Thwin, C.
    Chen, S.
    Naing, M. Win
    CYTOTHERAPY, 2019, 21 (05) : E9 - E9
  • [24] Label-free microfluidic stem cell isolation technologies
    Menachery, Anoop
    Kumawat, Nityanand
    Qasaimeh, Mohammad
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2017, 89 : 1 - 12
  • [25] BiCMOS Microfluidic Sensor for Single Cell Label-Free Monitoring Through Microwave Intermodulation
    Palego, C.
    Perry, G.
    Hancock, C.
    Hjeij, F.
    Dalmay, C.
    Bessandou, A.
    Blondy, P.
    Pothier, A.
    Lalloue, F.
    Bessette, B.
    Begaud, G.
    Jauberteau, M-O.
    Kaynak, C. B.
    Wietstruck, M.
    Kaynak, M.
    Casbon, M.
    Benedikt, J.
    Barrow, D.
    Porch, A.
    2016 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2016,
  • [26] Label-free cell separation and sorting in microfluidic systems
    Daniel R. Gossett
    Westbrook M. Weaver
    Albert J. Mach
    Soojung Claire Hur
    Henry Tat Kwong Tse
    Wonhee Lee
    Hamed Amini
    Dino Di Carlo
    Analytical and Bioanalytical Chemistry, 2010, 397 : 3249 - 3267
  • [27] Label-free cell separation and sorting in microfluidic systems
    Gossett, Daniel R.
    Weaver, Westbrook M.
    Mach, Albert J.
    Hur, Soojung Claire
    Tse, Henry Tat Kwong
    Lee, Wonhee
    Amini, Hamed
    Di Carlo, Dino
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (08) : 3249 - 3267
  • [28] Label-Free Isolation of Exosomes Using Microfluidic Technologies
    Tamrin, Sara Hassanpour
    Nezhad, Amir Sanati
    Sen, Arindom
    ACS NANO, 2021, 15 (11) : 17047 - 17079
  • [29] Label-free monitoring of T cell activation by the impedance-based xCELLigence system
    Guan, Ni
    Deng, Jiejie
    Li, Ting
    Xu, Xiao
    Irelan, Jeffrey T.
    Wang, Ming-Wei
    MOLECULAR BIOSYSTEMS, 2013, 9 (05) : 1035 - 1043
  • [30] Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry
    McGrath, J. S.
    Honrado, C.
    Moore, J. H.
    Adair, S. J.
    Varhue, W. B.
    Salahi, A.
    Farmehini, V.
    Goudreau, B. J.
    Nagdas, S.
    Blais, E. M.
    Bauer, T. W.
    Swami, N. S.
    ANALYTICA CHIMICA ACTA, 2020, 1101 : 90 - 98